Comparison of Nutritional Value of Tomato Pomace and Brewer's Grain for Ruminants Using in vitro Gas Production Technique

A. Aghajanzadeh-Golshani, N. Maheri-Sis, A. Mirzaei-Aghsaghali and A. Baradaran-Hasanzadeh
Department of Animal Science, Islamic Azad University, Shabestar Branch, Shabestar, Iran

Abstract: The aim of present study was to determine the chemical composition and estimate the nutritive value of tomato pomace and brewers' grain using in vitro gas production technique in sheep. Tomato pomace samples were collected from 4 tomato processing factories in East Azerbaijan, Iran and brewers' grain samples were obtained from Behnoosh Food Industrial Company, Karaj, Iran. Feed samples (200 mg from each) were incubated with rumen liquor taken from 3 fistulated rams at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h. The results showed that the Organic Matter (OM), Neutral Detergent Fiber (NDF) and Non Fibrous Carbohydrates (NFC) in brewers' grain were significantly higher than that of tomato pomace (p<0.05), while Crude Protein (CP), Ether Extract (EE) and Acid Detergent Fiber (ADF) in tomato pomace were significantly greater than that of brewers' grain (p<0.05). There were significant differences in Organic Matter Digestibility (OMD), Short Chain Fatty Acids (SCFA) and Metabolizable Energy (ME) contents between the two food industrial by-products (p<0.05). Gas productions at 24 h for tomato pomace and brewers grain were 38.99 and 31.14 mL, respectively. In an overall conclusion it seems that, the nutritive value of tomato pomace was higher than that of brewers' grain for ruminants.

Key words: Brewers’ grain, tomato pomace, gas production, metabolizable energy, nutritive value

INTRODUCTION

Developing food industrial factories consequently produced large amount of wastes and by-products. Dumping or burning wastes or agro-industrial by-products causes potential air and water pollution problems. High-moisture wastes are also difficult to burn. Many by-products have a substantial potential value as animal feedstuffs. Ruminants, especially, have the unique capacity to utilize fiber, because of their rumen microbes. This means that cereals can be largely replaced by these by-products. Consequently the competition between human and animal nutrition can be decreased. Nevertheless, there is an increased cereal supply owing to genetic and management improvement. The utilization of agro-industrial by-products may be economically worthwhile, since conventional feedstuffs are often expensive. However, livestock have historically utilized large amounts of well-known and widely-available traditional by-products such as oil meals, bran, middling, brewers grains, distillers grains, beet pulp and molasses (Bouque and Fiems, 1988). But

Corresponding Author: Naser Maheri-Sis, Department of Animal Science, Islamic Azad University, Shabestar Branch, Shabestar, Iran
less conventional by-products have become available, such as vegetable-and fruit-processing residues. The extent of by-products utilization as a feed ingredient depends on the costs of the conventional feedstuffs, the safety for animal health and the attractiveness of alternative uses. As some raw materials can be used for different production processes, the available amount to the various by-products is difficult to estimate and it is even more difficult to assess the quantity used as animal feed (Boucque and Fiems, 1988). Therefore, the nutritional value of regional by-products should be the evaluated, as feed value of feedstuffs may differ greatly from one location to another.

Tomato (*Lycopersicon esculentum* Mill.) is one of the most widely cultivated vegetable crops in Mediterranean Countries. Significant amounts are consumed in the form of processed products such as tomato juice, paste, puree, ketchup and sauce. During tomato processing a by-product, known as tomato pomace, is generated. This by-product represents, at most, 4% of the fruit weight (Del Valle et al., 2006). Dried tomato pomace contains 22.6-24.1% protein, 14.5-15.7% fat and 20.8-30.5% fiber. This by-product is a good source of vitamin B1, and a reasonable source of vitamins A and B2 (El-Boushy and Varder-Poel, 1994). Bordowski and Geisman (1980) reported that tomato pomace seeds protein contains approximately 13% more lysine than soy protein. In Iran, production of tomato pomace exceeds 150,000 tons year⁻¹ (Besharati et al., 2008). The potential use of these wastes in ruminant ration should participate in reducing the shortage of feedstuffs and subsequently increase milk and meat production in Iran. However, little is known about their fermentation pattern in the rumen and a better understanding of their digestion and products of fermentation is necessary in order to properly balance their introduction into the diets and the knowledge about their potential feeding value is insufficient (Besharati et al., 2008).

Brewers’ grains are the most important by-product of brewery industry. Every 100 L of beer accounts for an average 20 kg of brewers’ grains (Massato et al., 2006). Brewers’ grains are often used as a livestock feed. Because they provide protein, fiber and energy, are used in a variety of diets. Protein in Brewers’ grains can meet a significant portion of supplemental protein requirements; in addition, they provide fiber and needed bulk in the diets of ruminants. On DM basis, it contains a range of 220 to 280 g kg⁻¹ CP and 2.5 Mcal ME kg⁻¹ DM (NRC, 2001). Brew residues can be in the form of either dried brewers’ grains or wet brewers’ grains, which can be marketed directly. Moisture content in wet brewers’ grains ranges between 650-800 g kg⁻¹ (Aguilera-Soto et al., 2007). The dried brewers’ grains are easy to store because of its low moisture content. Brewers’ grains are suitable as forage source especially at the farms located near breweries (Youaker et al., 1998; Aguilera-Soto et al., 2007).

Several methods such as *in vivo*, *in situ* and *in vitro* techniques have been used in order to evaluate the nutritive value of feedstuffs (Maheri-Sis et al., 2008). The *in vitro* gas production technique has proved to be a potentially useful technique for feed evaluation (Menke and Steingass, 1988; Getachew et al., 2004) as it is capable of measuring rate and extent of nutrient degradation. In addition, *in vitro* gas production technique is less expensive, easily to determine (Getachew et al., 2004) and suitable for use in developing countries (Chumpawadee et al., 2005; Maheri-Sis et al., 2007, 2008). This method also predicts feed intake, digestibility, microbial nitrogen supply and amount of short chain fatty acids, carbon dioxide and metabolizable energy of ruminants’ feed (Babayemi, 2007; Maheri-Sis et al., 2008). When planning diet formulation, cost, chemical composition and digestibility of the energy of the feed source should be fully taken into account. Numerous varieties of energy feeds are available in tropical zones. However, there is insufficient information available regarding the effect of feed used on kinetics of gas production (Chumpawadee et al., 2007).
The aim of this study was to determine chemical composition and estimate the nutritive value of tomato pomace and brewers’ grain using \textit{in vitro} gas production technique.

\textbf{MATERIALS AND METHODS}

\textbf{Animals and Feeds}

Three fistulated Gezel rams were used for rumen liquor collection for application in gas production technique. The experimental samples were Tomato Pomace (TP) and Brewers’ Grain (BG). The TP samples were collected from four tomato processing factories in East Azerbaijan, Iran and BG samples were obtained from Behnoush Food Industrial Company, Karaj, Iran. The collected samples were dried, mixed and milled through a 1 mm sieve in Animal Nutrition Laboratory of Tabriz University, Tabriz, Iran.

\textbf{Chemical Analysis}

Collected samples were milled through a 1 mm sieve for chemical analysis and \textit{in vitro} gas production procedure. Dry Matter (DM) was determined by drying the samples at 105°C overnight and ash by igniting the samples in muffle furnace at 525°C for 8 h. Nitrogen (N) content was measured by the Kjeldahl method. Crude Protein (CP) was calculated as N*6.25 (AOAC, 1990). Neutral Detergent Fiber (NDF) was determined by procedures outlined by Van Soest \textit{et al.} (1991); sulfite was omitted from NDF analysis. All of chemical analyses were performed in the Laboratory of Animal Nutrition, Islamic Azad University, Shabestar Branch, Shabestar, Iran (Mar. 2008 to Aug., 2008).

\textbf{In vitro Gas Production}

Rumen fluid was obtained from three fistulated Gezel rams fed twice daily at the maintenance level with a diet containing alfalfa hay (60\%) and concentrate (40\%). The samples were incubated \textit{in vitro} with rumen fluid in calibrated glass syringes following the procedures of Menke \textit{et al.} (1979). Two hundred milligram samples were weighed in triplicate into calibrated glass syringes of 100 mL. The syringes were prewarmed at 39°C before the injection of 30 mL rumen fluid-buffer mixture into each syringe followed by incubation in a water bath at 39°C. Readings of gas production were recorded before incubation 0 and 2, 4, 6, 8, 12, 16, 24, 36 and 48 h after incubation. Total gas values were corrected for blank incubation. Cumulative gas production data were fitted to the model of Orskov (1979):

\[Y = a + b \left(1-e^{-ct}\right) \]

Where:
\begin{itemize}
 \item \textit{a} = The gas production from the immediately soluble fraction (mL)
 \item \textit{b} = The gas production from the insoluble fraction (mL)
 \item \textit{c} = The gas production rate constant for the insoluble fraction (b)
 \item \textit{a + b} = Potential gas production (mL)
 \item \textit{t} = Incubation time (h)
 \item \textit{e} = Neperian value (2.718282)
 \item \textit{Y} = Gas produced at time (t)
\end{itemize}

The Non Fibrous Carbohydrates (NFC), Short Chain Fatty Acids (SCFA), Digestible Organic Matter (DOM) and Metabolizable Energy (ME) values in experimental by-products were calculated using equations as below:
where, Gas is gas production at 24 h incubation (mL 200 mg⁻¹ DM); a, b, c are gas production parameters described by Orskov (1979) and NDF, CP, EE, CA are neutral detergent fiber, crude protein, ether extract, crude ash (% DM), respectively. Gas production test was carried out in the Laboratory of Animal Nutrition, Tabriz University, Tabriz, Iran (Aug, 2008).

Statistical Analysis

All of the data were analyzed by using software of SPSS (2002) and means of two sample groups were separated by independent-samples t-test (Steel and Torrie, 1980).

RESULTS AND DISCUSSION

The Organic Matter (OM), Neutral Detergent Fiber (NDF) and non Fibrous Carbohydrates (NFC) in brewers' grain were significantly higher than that of tomato pomace (p<0.05) (Table 1) while Crude Protein (CP), Ether Extract (EE) and Acid Detergent Fiber (ADF) in tomato pomace were significantly greater than that of brewers' grain (p<0.05). The NDF content of brewers' grain was lower than that obtained by Pereira et al. (1998) but higher than that obtained by Madrid et al. (2002), in line with the findings of DePeters et al. (1997), Batajoo and Shaver (1998) and Afrozhi and Firmohammadi (2007). The ADF content of brewers' grain was higher than the findings of DePeters et al. (1997), Pereira et al. (1998) and Madrid et al. (2002) and in line with Afrozhi and Firmohammadi (2007). The OM content of brewers' grain was in agreement with several researches findings (Alawa et al., 1988; DePeters et al., 1997; Batajoo and Shaver, 1998; Pereira et al., 1998). The CP content of brewers' grain were lower than those reported by DePeters et al. (1997), Batajoo and Shaver (1998), Pereira et al. (1998), Madrid et al. (2002) and Afrozhi and Firmohammadi (2007) and in line with Alawa et al. (1988) and Mussatto et al. (2006). The NDF content of tomato pomace was lower than Weiss et al. (1997), Denek and Can (2006), Besharati et al. (2008) and Taghizadeh et al. (2008) and in line with Chumpawadee et al. (2007) and Chumpawadee and Pimp (2008). The ADF content of tomato pomace was lower than those of Weiss et al. (1997), Denek and Can (2006), Chumpawadee et al. (2007), Besharati et al. (2008), Chumpawadee and Pimp (2008) and Taghizadeh et al. (2008). The OM content of tomato pomace was lower than those Weiss et al. (1997), Ayhan and Aktan (2004), Del Valle et al. (2006) and Denek and Can (2006) but higher than those Besharati et al. (2008) and

Table 1: Chemical composition of tomato pomace and brewers grain on dry matter basis (%)

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Tomato pomace</th>
<th>Brewers grain</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (DM)</td>
<td>92.00±1.03% DM basis</td>
<td>92.50±1.05% DM basis</td>
<td>NS</td>
</tr>
<tr>
<td>Organic matter (OM)</td>
<td>93.00±1.36</td>
<td>95.00±1.17</td>
<td>*</td>
</tr>
<tr>
<td>Crude protein (CP)</td>
<td>22.17±0.84</td>
<td>19.80±0.81</td>
<td>*</td>
</tr>
<tr>
<td>Ether extract (EE)</td>
<td>15.00±0.40</td>
<td>8.00±0.50</td>
<td>*</td>
</tr>
<tr>
<td>Neutral detergent fiber (NDF)</td>
<td>49.20±2.14</td>
<td>55.10±2.56</td>
<td>*</td>
</tr>
<tr>
<td>Acid detergent fiber (ADF)</td>
<td>32.60±1.95</td>
<td>25.20±2.11</td>
<td>*</td>
</tr>
<tr>
<td>Non fibrous carbohydrate (NFC)</td>
<td>6.63±0.56</td>
<td>13.10±0.40</td>
<td>*</td>
</tr>
</tbody>
</table>

NS: Non significant; *p<0.05, Data presented as Mean±SD
Chumpawadee and Pimpal (2008) and in agreement with several researches (Bouque and Fiems, 1988, Chumpawadee et al., 2007). The CP content of tomato pomace was lower than those reported by Bouque and Fiems (1988) and Chumpawadee et al. (2007) but higher than those National Academy of Science (1983), Weiss et al. (1997), Ayan and Aktan (2004), Del Valle et al. (2006), Demek and Can (2006) and Chumpawadee and Pimpal (2008) and in line with Besharat et al. (2008) and Taghizadeh et al. (2008).

The wide range of variation in chemical composition of experimental by-products between several researches can be due to different original materials, growing conditions (geographic, seasonal variations, climatic conditions and soil characteristics), extent of foreign materials, impurities and different processing and measuring methods (Maheris-Sis et al., 2008). Different chemical composition leads to different nutritive value, because chemical composition is one of the most important indices of nutritive value of feeds. Variation in chemical components of feeds such as starch, NFC, OM, CP, NDF, ADF and soluble sugars contents can be resulted in variation of *in vitro* gas production extent (Getachew et al., 2004; Maheris-Sis et al., 2008).

Gas production volumes (mL 200 mg⁻¹ DM) in different incubation times are presented in Table 2 gas production parameters (a, b, c) and calculated amounts of SCFA, OMD and ME of tomato pomace and brewers' grain are shown in Table 3.

The gas volume for tomato pomace in different incubation times (except of 2 h incubation) were significantly higher than that of brewers' grain (p<0.05). Gas volume at 24 h incubation (for 200 mg dry samples), soluble fraction (a), insoluble but fermentable fraction (b), for tomato pomace was 38.99, -5.22 and 50.25 and for brewers' grain were 31.14, 0.043 and 42.69 mL, respectively (Table 2 and 3). The negative (a) value for tomato pomace due to delay in onset of fermentation and microbial attachment was in agreement with Chumpawadee et al. (2007). Rate of gas production expressed in mL h⁻¹ (c) in tomato pomace (0.1143) was significantly (p<0.05) greater than brewers' grain (0.0614). The gas volume after 24 h incubation in current study for tomato pomace was higher than what was reported by

<table>
<thead>
<tr>
<th>Incubation times (h)</th>
<th>Tomato pomace</th>
<th>Brewers grain</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.55±0.70</td>
<td>2.40±0.45</td>
<td>NS</td>
</tr>
<tr>
<td>4</td>
<td>14.09±0.90</td>
<td>10.38±1.60</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td>22.45±0.90</td>
<td>14.90±1.50</td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td>27.27±0.46</td>
<td>18.52±1.35</td>
<td>*</td>
</tr>
<tr>
<td>12</td>
<td>30.99±0.31</td>
<td>21.95±1.20</td>
<td>*</td>
</tr>
<tr>
<td>16</td>
<td>34.42±0.62</td>
<td>25.88±1.07</td>
<td>*</td>
</tr>
<tr>
<td>24</td>
<td>38.99±0.75</td>
<td>31.14±0.92</td>
<td>*</td>
</tr>
<tr>
<td>36</td>
<td>44.17±0.90</td>
<td>37.95±1.35</td>
<td>*</td>
</tr>
<tr>
<td>48</td>
<td>47.98±1.10</td>
<td>41.61±0.63</td>
<td>*</td>
</tr>
</tbody>
</table>

NS: Non significant; *p<0.05, Data presented as Mean±SD

<table>
<thead>
<tr>
<th>Items</th>
<th>Tomato pomace</th>
<th>Brewers grain</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (mL)</td>
<td>-5.22±0.690</td>
<td>0.043±0.0030</td>
<td>*</td>
</tr>
<tr>
<td>b (mL)</td>
<td>50.25±00.2390</td>
<td>42.69±0.2440</td>
<td>*</td>
</tr>
<tr>
<td>c (mL h⁻¹)</td>
<td>0.1143±0.0031</td>
<td>0.0614±0.0012</td>
<td>*</td>
</tr>
<tr>
<td>@=b (mL)</td>
<td>55.47±00.2640</td>
<td>42.73±0.2780</td>
<td>*</td>
</tr>
<tr>
<td>OMD (%)</td>
<td>62.41±00.3580</td>
<td>52.72±0.2980</td>
<td>*</td>
</tr>
<tr>
<td>SCFA (mmol)</td>
<td>0.86±0.1018</td>
<td>0.68±0.0570</td>
<td>*</td>
</tr>
<tr>
<td>ME (MJ kg⁻¹ DM)</td>
<td>11.77±0.6090</td>
<td>9.05±0.6100</td>
<td>*</td>
</tr>
</tbody>
</table>

a: The gas production from the immediately soluble fraction (mL), b: The gas production from the insoluble fraction (mL) c: The gas production rate constant for the insoluble fraction, (b) NS: Non significant, *p<0.05. Data presented as Mean±SD
Chumpawadee et al. (2007) (38.99 vs. 24.60 mL) and almost in line with Besharati et al. (2008) findings (38.99 vs. 34.48 mL). The gas volume after 24 h incubation for brewers’ grain was lower than Getachew et al. (2002) findings. They are reported that gas production volume at 24 h incubation time for brewers’ grain was different between laboratories (35.3-41.5 mL). Different gas production in these studies can be due to different chemical constituents of by-products, animal types and breeds and quality of inoculums source (Menke et al., 1979; Getachew et al., 2004). There was a positive correlation between NFC content of feeds and gas production, but feed CP, NH3-N and NDF levels were negatively correlated with gas production (Getachew et al., 2004; Maheri-Sis et al., 2008). As presented in our data, the volume of gas production had a negative correlation with NDF levels of experimental by-products. Different gas volume and estimated values (ME, SCFA and OMD) could be due to different EE content of by-products. Therefore, tomato pomace with low NDF and high EE, should have greater gas volume, ME, SCFA and OMD than brewers grain.

The ME, SCFA and OMD of tomato pomace were significantly higher than that of brewers’ grain (p<0.05). The ME content of tomato pomace and brewers’ grain in this experiment were 11.77 and 9.05 MJ kg⁻¹ DM, respectively. The ME value of tomato pomace was greater than those reported by Chehly and Lee (1999), Chumpawadee et al. (2007) and Besharati et al. (2008). The ME content of brewers’ grain was higher than that reported by Chehly and Lee (1999), while lower than those findings of Alawa et al. (1988), Board (2002) and Getachew et al. (2002). Difference of energetic value of feedstuffs between several researchers may be due to different chemical content and measuring method and also variation inter and intra laboratories (Getachew et al., 2002). Organic matter digestibility of tomato pomace (62.41%) was higher than those reported by Chumpawadee et al. (2007), Besharati et al. (2008) and Mirzaei-Aghaghali and Maheri-Sis (2008). Organic matter digestibility of brewers’ grain (52.72%) was lower than those fine by Alawa et al. (1988), Boucque and Fieus (1988). The SCFA production of tomato pomace (0.8613 mmol) was higher than that reported by Besharati et al. (2008). The SCFA value of brewers’ grain in this study was 0.6870 mmol. Vlaemynck et al. (2004) reported that total VFA obtained from in vitro rumen fermentation of brewers’ grain was 1949 µmol.

The reason that, why energy content and organic matter digestibility of tomato pomace were higher than that of brewers’ grain could be due to difference in chemical composition (especially soluble carbohydrates, CP, NFC, EE, ADF and NDF) and volume of gas production (Menke and Steingass, 1988; Getachew et al., 2004). Blummmel et al. (1999) reported that the gas volume in the bicarbonate buffered Holzehnheim in vitro gas production test reflect SCFA production very closely. Gas volumes were produced quantitatively and qualitatively as a result of SCFA production (the amount of fermentative CO₂ and CH₄ could be accurately calculated from the amount and proportion of acetate, propionate and butyrate present in the incubation medium). Thus increasing amount of SCFA was lead to increase in gas production, which is resulted in high digestibility and energetic value.

CONCLUSION

In an overall conclusion the nutritive value (chemical composition, gas production characteristics, organic matter digestibility, metabolizable energy content and short chain fatty acids production) of tomato pomace were better than that of brewers grain. However, both by-products economically can be used as potential fibrous, energy and protein sources in ruminant nutrition.
ACKNOWLEDGMENTS

This study was carried out as a research project in Animal Sciences in Islamic Azad University, Shabestar Branch. Authors thanks from Animal Science Laboratories of Islamic Azad University, Shabestar Branch and Tabriz University.

REFERENCES

SPSS, 2002. SPSS 11.0 user guide. Information Technology Services Centre, Lingnan University, Hong Kong.

