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ABSTRACT

In this study, an advanced contrel technique for substrate feed rate regulation of fed batch
fermentation is developed. It is reliable in dealing with possible variations in the process condition.
In this study, neural network and fuzzy logic methods are used in the design. As a case study, the
baker's yeast production process is chosen to test these controllers. The evaluation of the
performance of the designed controllers is carried out through computer simulation. To obtain a
reliable assessment, the results are then compared with those of the PI controller. The results have
shown that the proposed approaches can be successfully applied to regulate of fed-batch
fermentation to improve the operation of such processes.
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INTRODUCTION

In recent years, the growth of the fermentation industry has been enormous worldwide. The
products coming from this industry cover many sectors such as chemical, pharmaceutical, energy,
food and agriculture. All these type of products now command a large industrial market and are
essential to modern society. In line with the increase in market competitiveness, the producers are
prompted to improve the quality of their products while at the same time reducing the production
cost and increasing the yield so as to survive the competition. In this respect, attention on the
monitoring and control aspect of fermentation process is necessary. Due to this, a large number of
research works on bioprocess control have emerged recently.

In many respects, the engineer concerned with the monitoring and control of a fermentor faces
a far more difficult task than those involved in chemical or purely physical processing units. The
fundamental distinction between the two 1s that the fermentor deals with a complex biological
system. Of particular importance is the fact that the actual process takes place inside living cells,
i.e., microorganisms (Sarkar and Modak, 2003). What makes such a system extremely difficult to
describe and hence hard to control is the expanding and self-reproducing nature of the
microorganisms as well as their highly sophisticated intracellular control. Consequently, the control
system design of fermentation processes faces the following obstacles:
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*  Due to the involvement. of living microorganisms whose behavior 1s uncertain, the mechanisms
ruling these processes are not adequately understoed to formulate reliable mathematical models

*  Because the actual metabolic processes take place inside individual living microorganisms, it 1s
likely to be impossible to fully influence the cell’s internal environment by manipulating the
external environment. in which they live

* The dynamic behavior of the processes is inherently nenlinear and the variation of the process
parameters is uncertain

* Reliable sensors to measure intracellular activities are rarely available, making the process
states very difficult to characterize

Control of fed batch fermentation has become the most productive area of research in
fermentation control studies. Since it was first devised in the early 20th century, fed batch
fermentation technique has been gaining acceptance in performing industrial fermentation
processes particularly for those suffering from conflict between productivity and yield. Many, if not
most, commercially important products are best produced in this type of ferment or operation. For
example, production of baker’'s yeast and penicillin are among processes deminantly performed
through this. The key factor in favour of fed batch fermentation 1s the enormous flexability with
respect to the regulation of substrate feeding. This, in turn, enables control of the process conditions
associated with the variation in substrate concentration in the fermentor to be achieved effectively
(Hilaly et al., 1994),

Despite their capability, fed batch fermentations rarely achieve their optimal performance in
practice. The requirement of a reliable controller for accurate substrate feed rate adjustment
becomes the main issue in this respect. As i1s well known, due to the involvement of living
microorganisms as well as the process mechanism, especially due to the effect of increase in culture
volume during the operation, fed batch fermentation processes exhibits significant nonlinearity and
time variance in their dynamics. The use of linear controller, such as the conventional PID, to deal
with such a feature normally results in unsatisfactory performance (Dairaku et al., 1983).

Recent decades have witnessed flourishing research efforts in the development of control
schemes for the substrate control problem (Rani and Rac, 1999; Lee ef al., 1999). A survey shows
that the use of optimal control strategy, both in open-leop and feedforward schemes, have been
attractive (Mahadevan ef al., 2001; Roy ef af., 2001). But it 1s admitted that this strategy exhibits,
at least, two fundamental drawbacks. First, the controller is insensitive to the process changes and,
second, due to the lack of reliable mathematical model, the ecalculated optimal feeding
profile is likely to perform at sub-optimal levels in practice. To overcome these drawbacks, in line
with the immense progress in computer technology, advance control methods, e.g., knowledge-
based or intelligent controllers, have been introduced for fed batch fermentation control
{Konstantinov and Yoshida, 1992).

Due to their impressive capability in dealing with severe nonlinearity and uncertainty of a
system, the application of fuzzy logic and neural network methods for the design of controllers for
fed batch fermentation processes has great potential. Generally, the application of these methods
in fed batch fermentation contrel can be realized in two ways, 1.e., by indirect and direct ways. In
the indirect way, they can serve, for example, as parameter estimators. In the direct way, fuzzy
logic and neural networks are used directly as the controller. For example, fuzzy logic controllers
are used as compensators for optimal controllers (Honda and Kobayashi, 2000) while neural
network contrellers are used in internal model control strategies (Schubert ef al., 1994). However,
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some difficulties in the application of the fuzzy logic and neural network methods have been
observed (Hang ef al., 1993). Basically, fuzzy logic and neural network models are developed on
the basis of input-output data sets of the process. In other words, this 1s a black-box approach. So
far, these methods lack definitive methodolegy to develop model for the controllers. Often, trial and
errar techniques are used to establish the model (determination of the size of the networks for the
neural network model and of the fuzzy rules and the tuning of the membership functions for the
fuzzy logic model). Despite these shortcomings, the use of fuzzy logie and neural network method
still has great aspects to explore. The application of adaptive control technique and hybrid control
strategy to these fuzzy logic and neural network controllers to improve their performances still
seems to be a potential research area for feed rate control of fed batch fermentation.

FED BATCH FERMENTATION

Fed batch fermentation refers to a technique of fermentation where the nutrients necessary for
microbial growth are fed either intermittently or continuously during the course of operation. The
reaction mixture is then harvested either fully or partially at the end of the operational period and
this whole process may be repeated several times (Parulekar and Lim, 1985). Simply, it can be
perceived that fed batch technique 1s a combination of batch and continuous operation, hence it 1s
sometimes called semi-batch fermentation. Figure 1 shows the diagram of the fed batch fermentor
together with its batch and continuous counterparts.

Fed batch fermentation has been found to be particularly effective for processes in which
substrate inhibition, catabolite repression and glucose effect are important with respect to the cell
growth and/or product formation. In other words, fed batch fermentation is well suited to processes
suffering from conflict between productivity and yield.

Historically, fed batch fermentor operation was originally devised by veast producers in early
1900’s to regulate the growth in batch culture of Saccharomices Cerevisieae (Baker's yeast) with
malt as a substrate (McNeil and Harvey, 1990). It was recognized that in the production of yeast
from malt wort, the concentration of malt wort must be kept low enough so that the yeast 1s not
grown too fast thereby preventing occurrence of anaerobic conditions in the culture and subsequent
production of ethancl. Additional wort was added at a rate which was always less than the rate at
which the yeast cells could use it. This led to increased yeast yield while obviating production of
ethanol. Following successful application to yeast production, fed batch cultures have heen applied
to other processes such as industrial production of antibiotics, amino acids, enzymes, vitamins,
single-cell proteins, biomass and various organic compounds of commercial importance

{Parulekar and Lim, 1985),
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Fig. 1(a-c): Fermentor operations: (a): Batch, (b): Fed-batch and (¢) continuous



Asian J. Biochem., 7 (1) 1-15, 2012

l

——

Initial =
— — — I
S o

J
|

Harvest

E
E
g

v

Fig. 2: Schematic of fed-batch fermentation operation

Operational mechanism: The schematic of fed batch fermentation operation is shown in
Fig. 2. Basically, the operation of fed batech fermentation begins with a batch culture. In this stage,
an initial volume of material, containing cells and substrate in a particular amount, undergoes
fermentation process by which substrate is converted into new cells and metabolite products. By the
time the batch stage is considered completed, fresh substrate is introduced and the fed batch culture
procedure begins. In this stage, the substrate feed rate is regulated based on the process demand
in order to achieve the process objective such as to obtain maximum metabolite product or
maximum cell production. When this stage is terminated, the fermentation broth is then harvested
and the fermentor is ready to run for the next batch. Regarding the time for starting and
finishing/harvesting the fed batch fermentation, the eriteria for this is very much dependent on the
specific cultivation kinetics and the operator’s interest. The most commonly used criterion to start
the feed is the depletion of the substrate. The fed batch 1s usually halted when the production slows
down due to cell death. Other criteria can be an increase in viscosity that implies an increased
oxygen demand or until oxygen limitation occurs.

Associated with harvesting method, two types of fed batch fermentation are known, i.e., single
and repeated or cyclic fed batch fermentation (Ferriera, 1999). For the former, the broth 1s fully
removed from the fermentor and the next batch starts from the beginning, i.e., batch culture while
for the latter, the broth is partially removed from the fermentor and the operation continues with
the fed batch culture procedure on the residual broth.

Besides the variable volume approach as explained above, fed batch fermentation process can
also be carried out through fixed volume appreach. In this appreach, the culture volume is
maintained practically constant by feeding a highly concentrated liquid or gas substrate (Ferriera,
1999). The repeated fed batch process for this approach can basically be done as fellows. A portion
of the broth is removed from the fermentor once the process reaches a certain stage, e.g., when
aerobic conditions cannot be maintained anymore and then sterile water or medium containing the
feed substrate 1s added to dilute the cells to the original volume (Na et al., 2002).

FUZZY LOGIC

Concepts: Fuzzy logic refers to a technique used to deal with the concept of the vagueness and
uncertainty of linguistic terms, e.g., high, low, big, small, warm, cold, ete. In this technique which
originated from the fuzzy set theory (Zadeh, 1965), the ideal and hard-edge classical conecept of
binary (yes/no, 0/1) logic 1s softened by taking into account the subtle border between sets of the
linguistic terms 9. Figure 3 shows the comparison between the concept of classical logic and fuzzy
logie.
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Fig. 4: Data flow in a fuzzy system

Fuzzy logic model design: Usually, a fuzzy model can be constructed by capturing human-
expert knowledge and transforming such expertise into rules and membership function. The
construction of the model generally involves three main processing elements, i.e., fuzzification,
fuzzy inference (iffthen rules) and defuzzification. Figure 4 shows the block diagram of this system
{Tsoukalas and Uhrig, 1997).

In the fuzzification stage, input variable value is transformed from crisp domain to fuzzy
domain, i.e., obtaining the grades of membership of the value with respect to the corresponding
fuzzy values. In the fuzzy inference stage, the data is then processed through ifithen rules. The
rules express the relationship between the input variable(s) and the output variable. The rules can
be written in the Mamdani form or in the Sugeno form. In the case of Mamdani-form fuzzy
inference, the rules relate the fuzzy values of the input variable(s) with the fuzzy values of the
output variable. This is actually the process of transferring the fuzzy value's grade of membership
of input(s) to the output one, where in the defuzzification stage they are in some ways manipulated
further to obtain the crisp value of the output variable. In the case of Sugenc-form rules, the rules
directly relate the fuzzy values of the input variable(s) with the erisp value of the output.

The comparison between fuzzy logic model with Mamdani rules and that with Sugeno rules is
illustrated in Fig. 5. In the Fig. 6 x1 and x2 stand for input variables, y is cutput variable, A, B,
C, D and E represent the fuzzy values. In short, the main difference between the two lies in the
fact that the consequence part of the Sugeno rules i1s normally a concrete mathematical function
of input variables instead of some fuzzy linguistic variables as used in the Mamdani rules.

The comparison between fuzzy logic model with Mamdani rules and that with Sugeno rules 1s
illustrated in Figure 5. In the figure, x1 and x2 stand for input variables, ¥ is cutput variable, A,
B, C, D and E represent the fuzzy values. In short, the main difference between the two lies in the
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Fig. 5: Fuzzy logic model with (a) Mamdani rules and (b) Sugeno rules
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Fig. 6a: Control system with basic neural network controller

fact that the consequence part of the Sugeno rules is normally a concrete mathematical function
of input variables instead of some fuzzy linguistic variables as used in the Mamdani rules.

Generally speaking, Sugeno fuzzy rule systems are more flexible and thus has stronger
modeling capacity to solve complex problems. Sugeno rules method is also recommended rather
than Mamdani rules if computational efficiency and convenience in fuzzy control analysis are very
important (Resnik ef al., 2000). For this reason, Sugeno fuzzy rule system is, therefore, used in this
work.

It should be noted that in establishing fuzzy models, depending entirely upon human
knowledge 1s impractical and dangerous (Hsu and Chen, 1999). even if the ideal expert knowledge
exists, the knowledge based 1s usually incomplete or partially incorrect.

There 1s no objective way to extract all correct human knowledge. In addition, often different
experts give different rules, which may even have conflicts. Therefore, the application of adaptive
and hybrid strategies is necessary.

Basic neural network controller scheme: This basic neural network controller refers to the
controller using merely a neural network model in its control law. Inverse neural network model
with feed forward structure 1s used as the controller in this case.

Controller design: In the fed-batch fermentation control system, this contreller works in a
feedback manner. The diagram of the control system is shown in Fig. 6a.

6
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The design of this basic scheme involving a neural network controller covers features essential
in the development of the neural network model used. The development includes the selection of
input-output variable for the model, the data used for training and validation and neural network
model formulation. The elaboration of these features is presented.

Input-output variable selection: The model is considered to consist of three input nodes, 1.e.,
the current difference value of feed rate, the current value of (.-G and the one-step-ahead value
of (Q.,Q,. The output of the model is the one-step-ahead difference value of feed rate.
Mathematically, this input-output relationship is expressed by:

AF, = £ (AF,;, A (Q-Qo)s A (Q-Qc)) (1)
where:
A (QQ) = (QerQ)-(Qr Qo (2)
A Qe Qo) = (Qr Qe (Q Qo) 3)
AF, = FF,, (4)
AF,, =F,, -F, (5)

It should be noted that, in the implementation, (Q,-Q,).,, in Fq. 3 serves as the set point of the
neural network controller. The actual controller output, i.e., the manipulated substrate feed rate
is then obtained by the following equation:

F.,=F+AF.,

Training and validation data: Since the direct inverse model approach is used, the training data
sets are prepared based on the process input which, in this case, is the substrate feed rate. Two sets
of data are used in the training stage and one data set is used in the validation stage. These data
sets are generated through simulating the process under a casual control condition. To obtain
different profile of the data sets, disturbances of different types (.e., the change in glucose
concentration of the substrate feed and the changes in the value of process parameter pmax) are
introduced in each of three batches of the process. These three data sets are considered as the
historical data of the process. The training data sets and the validation data set are shown in
Fig. 6b and 7, respectively.

Model development: The following are several features considered in the neural network control
model development.:

¢ The model 1s of layered network type with one hidden layer. Based on Eq. 1, the architecture
of the neural network model is shown in Fig. 8. The number of nedes employed in the hidden
layer 1s determined by trial and error method during the training stage. Therefore, it is
considered as a training variable
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Fig. 7(a-b): Data set for validating neural network control model

The hyperbolic tangent sigmoidal transfer function (Fig. 3b) is employed in the hidden layer
nodes while the linear transfer function (Fig. 3a) is used in the output node. It should be noted
that the effective range of the x-axis of the hyperbolic tangent sigmoidal transfer function 1s
within the interval of (-3)-3. To gain the benefit of the curvature of the function, the interval
of 0-3 or 0-(-3) 1s more useful. However, to attain a particular degree of accuracy of the
model, a sub-interval within this interval is needed to consider. Henee, scaling the training data

into a certain range within the interval is necessary. The formula for the scaling is shown
below:

uiv — liv

sy ————————
max (av) — min (av)

S(av— min(av):| + liv (6)
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Fig. 8: Typical architecture of the neural network control model

where, sv, av, wiv and liv stand for the scaled, actual, upper and lower interval values,
respectively. The scaling parameters, i.e., the interval’s lower and upper values, are then
considered as variables in the training

*  The model is trained, which is the determination of the optimum weighting coefficient values
of the interconnections among the nodes, by using Levenberg-Marquardt method (Edgar et al.,

2001).

Controller design: As seen in the preceding section, due to its fixed gain, the neural network
controller with the basic scheme performed unsatisfactorily. The inclusion of adaptive feature is
found necessary for the controller to keep up with the change in the process gain. Suppose dis a
factor denoting the gain of the neural network controller, then Eq. b can be rewritten as follows:

Fu,= & (F+AF,,) (7

The value of the factor & in the basic controller scheme was actually fixed over the operation
and assumed to be unity. In this adaptive scheme, this factor i1s made adjustable.

As mentioned in before that since the change in process gain of the process 1s assocciated
strongly with the change in the biomass concentration in the culture, it is reasonable to use the
biomass concentration as the reference variable to adjust this factor during the process. Hence, the
idea was that the value of factor & should be changed according to the change in the biomass
concentration. Fuzzy logic methodology is then utilized to determine this change in the factor’s
value. In fact, it can be said that this is a kind of gain scheduling method. Unlike the interval-based
gain scheduling method applied for the FI controller in which the controller gain changes abruptly,
this fuzzy logic-based adaptive strategy implements smooth changes in the controller gain. The
development of the strategy is described below.

Four fuzzy membership functions of biomass concentration are considered, i.e., low, medium,
high and very high. The design of the membership functions is as shown in Fig. 9. In the rule part,
the Sugeno fuzzy inference method is applied where the biomass concentration acts as the
antecedence and the adaptive parameter, 1.e., the gain factor, acts as the consequence. Before
describing the design of the fuzzy rules, an important issue, i.e., the initialization of the gain factor,
needs to be addressed.
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Fig. 9: Fuzzy membership functions of biomass concentration

Initialization of the gain factor is required to ensure the stability of the contrel system when
it starts running. Recall that the gain of the basic controller is represented by the value of the gain
factor of 1. As shown in the previous section, the control action of the basic contreller is aggressive
in the early period of the process. Since the stability of the control system in this period is obtained
as the dynamics of the controller matches that of the process, it makes sense to reduce the value of
the gain factor down to the value representing such a condition. It is found that such a condition
is achieved when the value of the gain factor 1s set to be 0.33 which 1s used as the initial value of
the gain factor.

Based on its imitaal value, it 1s logical to assign maximum value of the gain factor for each of the
membership function according to the trend of biomass profile during the process. As shown in
Fig. 3.4b, it is seen that the increase in biomass concentration is almoest linear in trend. Hence, as
initial setting, the values of 0.33, 0.9, 1.5 and 2.1 are assigned for the membership funections of low,
medium, high and very high, respectively. A series of simulation is carried cut to check and correct
these values. Finally, it is found that the appropriate maximum gain factor values for membership
functions of low, medium, high and very high are 0.35, 0.9, 1.5 and 2.1, respectively. Hence, the
fuzzy rules are established as follows:

If X is low then & = 0.35GM,_,,

If X is medium then & = 0.9GM, ;.4 (8)
IEX 1s high then & = 1.5GMy,,

If X is very high then & = 2.1G M, 140

where, X and GM, are biomass concentration and the grade of the membership of the function i,

respectively.

Controller performance: The following is the simulation results of the implementation of the
indirect adaptive scheme neural network controller in the fed-batch fermentation control. The
performance of the controller is investigated through studies of nominal operating condition, set
point change tracking and disturbance rejection. The process operating values for the studies has
been given in Table 1. The results of this controller in dealing with the given process conditions are
shown in Fig. 10-14, respectively while the calculated TAE is given in Table 2.

Figure 10 shows the performance of the controller in maintaining the nominal operating
condition. The oscallations observed in the basic neural network controller are totally removed by

10
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Fig. 10(a-b): Process and controller response of indirect adaptive neural network controller
for nominal operating condition study
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Fig. 11{a-b): Process and controller response of indirect adaptive neural network controller
for set point tracking study

x 1063
8 @ — Response
—— Setpoint

(Qc-Qo)
~
—
?

8000

6000

4000

Feed rate (I/h)

2000

Time (h)

Fig. 12(a-b): Process and controller response of indirect adaptive neural network controller
for external disturbance rejection study
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Tahble 1: Operating values of process variables used in the controller performance in the controller investigation

Process variable

Set-point, (Q,-Q.) External dist., Cf Internal dist., Q™= Mixed dist., Cf, Q==

Nominal operating condition 0.0062 1.6 0.06 1.6, 0.060
Varying operating condition:

t: 0-2.0h 0.0062 1.6 0.06 1.6, 0.060
t: 2.0-5.0h 0.0065 1.7 0.065 1.7, 0.065
t: 5.0-7.5h 0.0062 1.6 0.060 1.6, 0.060
t: 7.56-10.0h 0.0059 1.5 0.055 1.5, 0.055
t:10.0-125h 0.0062 1.6 0.060 1.5, 0.060
t:12.5-16h 0.0065 1.7 0.065 1.7, 0.065

Table 2: Integral absolute error of process response under indirect adaptive neural network controller

Studies IAE
Nominal operating condition 0.0117
Set point changes 0.0175
External disturbance changes 0.0339
Internal disturbance changes 0.0253
Mixed disturbance changes 0.0369
Average 0.0251
8 T T
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Fig. 13{a-b): Process and controller response of indirect adaptive neural network controller for
internal disturbance rejection study

this controller. In dealing with the variation of set point. (Fig. 11), the controller 1s able to bring the
process to follow the given set point changes. However, in the early half of the operation peried, the
controller responds fast to the deviation occurring, 1.e., arcundt =2.5h and t = 5.0 h. The controller
is a bit aggressive in this period as indicated by the cceurrence of small oscillations cbserved in the
interval of Bto 7.5 h that 15, when the set point turns back to its nominal value. In the subsequent
period, the controller becomes sluggish in responding to the pertubations. This can be seen from the
process response around t =10 h and t =12.5 h,

In the study of external disturbance rejection (Fig. 12), it can be seen that the controller is
successful in rejecting the disturbances at t = 25, band 7.6 h. Butatt=10handt=125h,

12
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Fig. 14(a-b): Process and controller response of indirect adaptive neural network controller for

mixed disturbance rejection study

especially for the latter, the controller over acts and causes the process response to severely oscillate,
In addition to this, small oscillations are observed in the interval 5to 10 h. In dealing with the
internal disturbances (Fig. 13), the performance of this controller seems reascnable in some sense.,
Small oscillations also appear in the 2.5 to 7.5 h period. Sluggish control action 1s observed arcund
t. =10 h causing the controlled variable to take a significantly long time to reach the set point, 1.e,,
when it moves from a state below the set point. Severe oscillatory process response i1s observed
around t = 12.5 h. In the mixed disturbance rejection study (Fig. 14), it can be seen that the
controller performs reasonable when responding to deviations at t =5, 7.5 and 10 h. However, it
becomes sluggish when responding to large deviations in the process response as noticed in the
figure around t =2.5h andt =12.5 h.

From the results shown above, it can be concluded that, since no significant oscillation and
offset are observed in the process response in the study of nominal operating condition, the
controller is capable of following the time-varying characteristics of the process. The controller
seems capable of dealing with the process nonlinearity as indicated by its ability in tracking set,
point changes. However, these capabilities do not cover a wide control range. The occurrence of
oscillations in the process response when dealing with disturbances in the last 5 h confirms this
observation. In spite of that, compared to the results of the basic scheme, a large improvement 1is
observed with this contrel scheme. This can be seen from the integral absclute error values
(Table 2) which are very much lower compared to that of the basic neural network controller
scheme. Improvement achieved by this adaptive neural network controller is 43.74% on the
average.

In view of the above, the use of biomass concentration as the adaptation reference variable as
well as the lack of comprehensive fuzzy membership functions and rules for the adjustment of the
gain factor 1s the most likely reasons for its performance. As previously mentioned, the change in
biomass concentration during the process is associated with the process gain changes. So, the use
of biomass concentration as the adaptive reference variable is beneficial only to prevent the
deviation due to the time-varying process changes but is not sufficient and reliable to prevent the
deviation due to changes in process operating conditions. Therefore, the application of a direct

adaptive approach to cater for this consideration is given in the next section.

13
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CONCLUSION

This study aims at designing advanced controllers for substrate feed rate regulation of fed-batch
fermentation. Production of baker's yeast is used as the process under study. Since it 1is
characterized by nonlinearity in its dynamies, control of substrate feed rate to baker's yeast fed-
batch fermentation is difficult. It has been shown that conventional fixed-gain and scheduled-gain
PI controllers result in unsatisfactory contrel performance when dealing with this process.
Significant offset and oscillations are observed in the process response and the controller action
suffers from fluctuations when the input control signal is corrupted by noise. The development
involves the design of the basic, adaptive and hybrid control schemes for both the neural network
and fuzzy logic controllers. This design and application is an important contribution of this work.,
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