Measuring the Interestingness of Classification Rules

Sanjeev Sharma, Swati Khare and Sudhir Sharma
School of Information Technology,
Rajiv Gandhi Technological University, Bhopal, MP, India

Abstract: Data mining tools and techniques provide various applications with novel and significant knowledge. This knowledge can be leveraged to gain competitive advantage. However, the automated nature of data mining algorithms may result in a glut of patterns—the sheer numbers of which contribute to incomprehensibility. Importance of automated methods that address this immensity problem, particularly with respect to practical application of data mining results, cannot be overstated. We provide a survey of one important approach, namely interestingness measure and discuss its application to extract interesting results out of large number of rules generated by the classification rule generator program. We have used the US Census database of UCI repository as our experimental domain. Rules are generated by the Christain Borgelt's classification rule discovery program. A new rule selection mechanism is introduced and experimental results show that our method is effective in finding interesting rules.

Keywords: Data mining, classification rules, interestingness measure

INTRODUCTION

A data mining technique usually generates a large amount of patterns and rules. However, most of these patterns are not interesting from a user's point of view. Beneficial and interesting rules should be selected among those generated rules. This selection process is what we may call a second level of data mining; mining among rules. A pattern is interesting if it is easily understood, unexpected, potentially useful and actionable, novel, or it validates some hypothesis that a user seeks to confirm.

Systems that learn from examples often express the learned concept as a disjunction. The size of a disjunct is defined as the number of training examples that it correctly classifies (Holte et al., 1989). A number of empirical studies have demonstrated that learned concepts include disjuncts that span a large range of disjunct sizes and that the small disjuncts-those disjuncts that correctly classify only a few training examples-collectively cover a significant percentage of the test examples (Holte et al., 1989; Ting, 1994; Weiss and Provost, 2003). It has also been shown that small disjuncts often correspond to rare cases within the domain under study (Weiss and Provost, 1995) and cannot be totally eliminated if high predictive accuracy is to be achieved (Holte et al., 1989).

The very important reason to learn to deal with the two types of disjuncts differently when comes the issue of interestingness of the disjuncts is that there is the strong need to build machine learning programs which can improve the accuracy of small disjuncts without significantly decreasing the accuracy of the large disjuncts, so that the overall accuracy of the learned concept is improved. Several researchers have attempted to build such learners. One approach involves employing a maximum specificity bias for learning small disjuncts, while continuing to use the more common maximum generality bias for the large disjuncts (Holte et al., 1989; Ting, 1994). Unfortunately, these
efforts have produced, at best only marginal improvements. As they deal with only the accuracy part of the rule interestingness. It is worth noting that the rule interestingness comprises both the accuracy and surprisingsness of the rule.

In this study we use MinGen measure given by Freitas (1998) which was originally proposed for small disjuncts, along with applying the Plateksky-Shapiro (1991) maximum generality bias measure for large disjuncts and Tan, 2000) maximum specificity bias measure for small disjunct. So trying to completely cover the issue of rule interestingness with this study.

BACKGROUND

A classification rule is a knowledge representation of the form $A \rightarrow B$, where A is a conjunction of predicting attribute values and B is the predicted class. When evaluating the quality of a rule, three common factors to be taken into account are the coverage, the completeness and the confidence factor of the rule, defined as follows. The coverage of the rule (i.e., the number of tuples satisfied by the rule antecedent) is given by $|A|$. The rules completeness (or proportion of tuples of the target class covered by the rule) is given by $|A \land B|/|B|$. The rules confidence factor (or predictive accuracy) is given by $|A \land B|/|A|$. Piatesky-Shapiro (1991) has proposed three principles for rule interestingness (RI) measures, as follows.

- $ RI = 0 \text{ if } |A \land B| = |A| \land |B|/N.$
- $ RI \text{ monotonically increases with } |A \land B| \text{ when other parameters are fixed.}$
- $ RI \text{ monotonically decreases with } |A| \text{ or } |B| \text{ when other parameters are fixed.}$

The first principle says that the RI measure is zero if the antecedent and the consequent of the rule are statistically independent. The second and third principles have a more subtle interpretation. Note Piatesky-Shapiro (1991) was careful to state these principles in terms of other parameters, which is a phrase general enough to include any other parameter that we can think of. Let us assume for now that the rule parameters referred to by these principles are the terms $|A|$, $|B|$ and $|A \land B|$, which are the terms explicitly used to state the principle. Note that this is an implicit assumption in most of the literature. However, we will revisit this assumption later in this section. With the above assumption, principle 2 means that, for fixed $|A|$ and fixed $|B|$, RI monotonically increases with $|A \land B|$. In terms of the above mentioned rule quality factors, for fixed $|A|$ and fixed $|B|$, the confidence factor and the completeness of the rule monotonically increase with $|A \land B|$ and the higher these factors the more interesting the rule is.

Principle 3 means that: (1) for fixed $|A|$ and fixed $|A \land B|$ (which implies a fixed coverage and a fixed confidence factor) RI monotonically decreases with $|B|$-i.e., the less complete, the less interesting the rule is and (2) for fixed $|B|$ and $|A \land B|$ (which implies a fixed rule completeness) RI monotonically decreases with $|A|$ - i.e., the greater the coverage, the smaller the confidence factor and the less interesting the rule is.

Major and Mangano (1993) have proposed a fourth principle for RI measures (which does not follow from the first three principles), namely:

- $ RI \text{ monotonically increases with } |A| \text{ (rule coverage), given a fixed confidence factor greater than the baseline confidence factor (i.e., the prior probability of the class). It should be noted that the above principles were designed mainly for considering the widely-used rule quality factors of coverage, completeness and confidence factor.}$
Another widely-used rule quality factor is rule complexity. Although these factors are indeed important when evaluating the quality of a rule, they are by no means the only ones. In this study we draw attention to five other factors related to rule quality and particularly to rule interestingness. These additional factors are discussed in the next subsections.

Note that, in theory, Piatetsky-Shapiros principles still apply to rule interestingness measures considering these additional factors, as long as they remain fixed. (As mentioned before, the principles were carefully defined with the expression fixed other parameters.) The problem is that, in practice, these additional factors do not remain fixed. These additional factors will probably vary a great deal across different rules and this variation should be taken into account by the rule interestingness measure.

OUR APPROACH

The Algorithm

Algorithm Find Interesting Rules

Begin
 Create arrays for coverage of A, B, A and B
 Select rule table
 Do While (Not EOF ()
 Find nonempty fields that contain conditions and condition numbers
 Parse each condition
 Select data table
 Determine matching attributes with the rules
 Do While (Not EOF ()
 Determine the coverage
 EndDo
 Apply MinGen measure to each rule
 Calculate Surprisingness of the rule
 Calculate Interestingness of the rule
 Update interestingness field in the rule table
EndDo

As we have stated that issue of interestingness of the discovered rules, whether the data mining task is association analysis or classification, is as important from the decision makers point of view as the any other step involved in the complete data mining process. There are several factors that should be considered while determining the interestingness of the generated rules. Here it is discussed how these factors should be evaluated and integrated into the rule selection mechanism. For this reason, we present a step-by-step schema to produce really interesting rules.

Misclassification Costs

We have seen that misclassification costs are important for rule interestingness. A rule predicting a patient does not have a particular disease while he indeed does is very risky and misclassification cost of such a rule is very high. In domains where we cannot tolerate erroneous classifications, a rule which has a low error rate and low misclassification cost is more desirable.

In order to integrate this inverse proportion to the rule interestingness calculations, we should divide the basic rule interestingness measure by the misclassification cost of the rule, which is defined as follows:

45
\[\text{MisClassCost} = \sum_{i=1}^{k} \text{Prob}(j) \times \text{Cost}(i,j) \]

Here \(\text{Prob}(j) \) is the probability that a tuple classified by the rule has true class \(j \), class \(1 \) is the class predicted by the rule and \(\text{Cost}(i,j) \) is the cost of misclassifying a tuple with true class \(j \) as class \(1 \) and \(k \) is the number of classes. \(\text{Prob}(j) \) can be calculated as follows, taking into account the effect of disjunct size:

\[\text{Prob}(j) = \frac{(1+|A\text{ and } \neg B|)}{(k+|A|)} \]

Suppose there are two classes for the goal attribute, then \(k \) takes the value 2 and the formulae becomes

\[\text{Prob}(j) = \frac{(1+|A\text{ and } \neg B|)}{(2+|A|)} \]

We are not assigning misclassification costs as we are trying to simply apply the rule interestingness measure on the generated rules, but if these rules are used for some specific applications like acceptance of credit or loan request on the basis of income level then the misclassification cost must be applied. In order for that cost matrix must be built, according to some expert of that domain.

The MinGen measure

Freitas (1998) has proposed a new measure which is very specific to the classification rule discovery. This measure was originally proposed in the context of small disjuncts. Formula given by Freitas considers the minimum generalizations of the current rule \(r \) and counts how many of those generalized rules predict a class different from the original rule \(r \). Let \(m \) be the number of conditions (attribute-value pairs) in the antecedent part of the rule \(r \). Then rule \(r \) has \(m \) minimum generalizations. The \(k \)-th minimum generalization of \(r \), \(k = 1, \ldots, m \) is obtained by removing the \(k \)-th condition from \(r \). Let \(C \) be the class predicted by the original rule \(r \) (the majority class among the examples covered by the antecedent of \(r \)) and \(C_k \) be the class predicted by the \(k \)-th minimum generalization of \(r \) (the majority class of the examples covered by the antecedent of the \(k \)-th minimum generalization of \(r \)). The system compares \(C \) with each \(C_k \), \(k = 1, \ldots, m \) and \(N \) is defined as the number of times where \(C \) is different from \(C_k \).

The number \(N \), in the range \(0 \) to \(m \) could be defined as the degree of surprisingness of rule \(r \): the larger the value of \(N \) the more surprising rule \(r \) is, in the sense of predicting a class different from its minimum generalizations.

Each of the \(m \) generalized rules produced by this procedure covers a superset of the examples covered by the original, specific rule \(r \). As a result the distribution of the classes in the set of examples covered by each generalized rule can be significantly different from the distribution of the classes in the rule \(r \). Hence the rule consequent (predicted class) is recomputed for each generalized rules will predict the most frequent class in its set of examples.

However, that measure would be biased to favor very long rules (with many conditions), i.e., the value of the measure would tend to grow with the value of \(m \). In order to avoid a potential confusion, the following normalized version of the rule surprisingness measure, denoted by MinGen:

\[\text{MinGen} = \frac{N}{m} \]
The larger the value of this measure, the more surprising the rule is. One disadvantage of this rule surprisingness measure is its relatively high computational cost. For each specific rule being evaluated, the system needs to compute m generalized rules.

Finding Interesting Rules In US. Census Data

In this study, the rule interestingness measure mentioned above is applied to US Census data collected from the UCI repository. This data was extracted from the census bureau database found at [http://www.census.gov/ftp/pub/DES/www/welcome.html]

Domain Description

In our experimentation domain, we are trying to predict whether an individual’s total income is less than or greater than $50,000 by looking at some information about the individual. Prediction task is to determine the income level for the person represented by the record. The data was split into train/test in approximately 2/3, 1/3. There are 40 attributes in the census database and incomes have been binned at the $50K level to present a binary classification problem. For our experimentation we have selected education, major occupation code and income attributes to simplify the matters.

Basic statistics for this data set:
Number of instances data = 199522
17 distinct values for attribute education nominal
15 distinct values for attribute major occupation code nominal

There is the database table occupation.txt which consists of the above mentioned attributes. After applying the Christian Borgelt’s rule induction program on this table 117 rules are generated by taking the default parameters.

No. of records containing income $+50,000 = 3392
No. of records containing income $-50,000 = 196130

Persons having income less than $50,000 are in class -50,000 and persons having income greater than $50,000 are in the class +50,000. So, this reduces to a binary classification problem.

Experimental Details

In our domain, the attributes have no acquisition costs since they are mostly demographic information. Also, they are not given weights, since all attribute are of the same interest. We are not interested in particularly identifying any one class, we do not assign weights to classes either. Since class +50,000 is the minority class in the dataset and rules predicting the minority class are already counted as more interesting, assignment of weights to classes is not essential in our example domain.

Grouping by Coverage Values

It is clear from various studies that small and large disjuncts, i.e., the rules having low coverage (support) and rules having large coverage should be evaluated in different ways. For this evaluation, Holte et al. (1989) suggested that small disjuncts should be evaluated with a maximum-specificity bias, in contrast with the maximum-generality bias favoring large disjuncts. Tan and Kumar also argued that a good interestingness measure should take into account the support of the pattern. They have showed that their proposed IS measure can be used in the region of low support, i.e., support of 0.3, whereas using RI measure in the region of high support is preferred. Hence, in order to make small disjuncts as interesting as large disjuncts, IS measure may be taken as the basic measure for rules having coverage values in the range of (0,0.3) and RI measure for rules with coverage values (0.3,1). Here are the formulations for two measures, respectively:
MinGen measure (Freitas, 1998) must be applied to rule interestingness calculation of classification rules for surprisingness factor to be taken into account.

Experimental Results

Borgels (1997) rule induction algorithm is applied to the database. Total 117 rules are generated as a result of the rule generator program. Confidence level pruning is done. US Census database is being classified for the income level less than or greater than 50K $ on the basis of education level and occupation code.

In the first run all rules were evaluated on the basis of RI measure and then in the second run small disjuncts are evaluated on the basis of IS measure and large disjuncts are evaluated on the basis of RI measure. Thus we calculate the accuracy of each rule applying different biases for small and large disjuncts.

After applying the MinGen measure to rules we get the values of surprisingness for the rules. It is obvious that Interestness = Accuracy + Surprisingness

Now we can finally state the exact interestingness of the rules as shown in the Table 1.

In Table 1, one important observation is that the most interesting rule is the one belonging to class 0 and also in the rest of the list, rules belonging this class are in higher levels to.

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>Rule Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Occupation Code = 34</td>
</tr>
<tr>
<td>2</td>
<td>Education = 7th and 8th grade and Occupation Code = 4</td>
</tr>
<tr>
<td>3</td>
<td>Education = Associates degree-occup/vocational and Occupation Code = 7</td>
</tr>
<tr>
<td>4</td>
<td>Education = 7th and 8th grade and Occupation Code = 7</td>
</tr>
<tr>
<td>5</td>
<td>Education = Associates degree-occup/vocational and Occupation Code = 7</td>
</tr>
<tr>
<td>6</td>
<td>Education = 1st 2nd 3rd or 4th grade and Occupation Code = 4</td>
</tr>
<tr>
<td>7</td>
<td>Education = Prof school degree (MD DDS DVM LLB JD) and Occupation Code = 4</td>
</tr>
<tr>
<td>8</td>
<td>Occupation Code = 35</td>
</tr>
<tr>
<td>9</td>
<td>Occupation Code = 0</td>
</tr>
<tr>
<td>10</td>
<td>Education = Prof school degree (MD DDS DVM LLB JD) and Occupation Code = 6</td>
</tr>
<tr>
<td>11</td>
<td>Education = High school graduate and Occupation Code = 11</td>
</tr>
<tr>
<td>12</td>
<td>Education = Masters degree (MA MS MEng MEd MSW MBA) and Occupation Code = 2</td>
</tr>
<tr>
<td>13</td>
<td>Education = Masters degree (MA MS MEng MEd MSW MBA) and Occupation Code = 5</td>
</tr>
<tr>
<td>14</td>
<td>Education = Prof school degree (MD DDS DVM LLB JD) and Occupation Code = 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Support</th>
<th>Confidence</th>
<th>Interestingness</th>
</tr>
</thead>
<tbody>
<tr>
<td>50000</td>
<td>4025</td>
<td>92.6</td>
<td>0.1378530</td>
</tr>
<tr>
<td>50000</td>
<td>3</td>
<td>66.7</td>
<td>0.0031741</td>
</tr>
<tr>
<td>50000</td>
<td>4</td>
<td>75</td>
<td>0.503911</td>
</tr>
<tr>
<td>50000</td>
<td>1</td>
<td>100</td>
<td>0.502258</td>
</tr>
<tr>
<td>50000</td>
<td>2</td>
<td>50</td>
<td>0.502258</td>
</tr>
<tr>
<td>50000</td>
<td>1</td>
<td>100</td>
<td>0.002258</td>
</tr>
<tr>
<td>50000</td>
<td>12</td>
<td>50</td>
<td>0.5055309</td>
</tr>
<tr>
<td>50000</td>
<td>3168</td>
<td>90.40</td>
<td>1.208383</td>
</tr>
<tr>
<td>50000</td>
<td>100682</td>
<td>99.10</td>
<td>0.0040739</td>
</tr>
<tr>
<td>50000+</td>
<td>19</td>
<td>63.20</td>
<td>0.5589586</td>
</tr>
<tr>
<td>50000+</td>
<td>5</td>
<td>60</td>
<td>0.5297394</td>
</tr>
<tr>
<td>50000+</td>
<td>1049</td>
<td>60.20</td>
<td>1.4314774</td>
</tr>
<tr>
<td>50000+</td>
<td>139</td>
<td>59.70</td>
<td>1.1564107</td>
</tr>
<tr>
<td>50000+</td>
<td>526</td>
<td>71.90</td>
<td>0.3339099</td>
</tr>
</tbody>
</table>

48
CONCLUSION AND FUTURE WORK

This research provides insight into the degree of variation according to the disjunct size in learning. By measuring interestingness of rules induced from US Census database, we demonstrated that some domains are prone to the problem of small disjuncts and class skews and accordingly the measure of interestingness must be chosen to deal with them.

Although the focus of this study was on measuring the interestingness of discovered rules and understanding the impact of small disjuncts on learning, present results could lead to improved learning algorithms.

We believe that the special contribution of this study is to gain attention towards applying not only different learning biases for rules but also to adopt some specific measure for rule surprisingness as this is the inseparable part of rule interestingness along with the rule accuracy.

For future research, by taking into account different conditions (attributes), further researches can be performed. Another possible research area can be to apply the classification analysis in this domain for some real world applications and accordingly different factors affecting the rules interestingness like misclassification cost, attribute usefulness and class weights can be determined with the help of domain experts. The most important study is to show the results to the user of the domain and accordingly rules real interestingness can be determined.

REFERENCES

Tan, P. and V. Kumar, 2000. Interestingness measures for association Patterns: A Perspective. Technical Report # TR00-036, Department of Computer Science, University of Minnesota.