Thermal and pH Stabilities of Partially Purified Polyphenol Oxidase Extracted from *Solanum melongenes* and *Musa sapientum* Fruits

P.C. Chikezie, A.R. Akuwudike and C.M. Chikezie
Department of Biochemistry, Imo State University, Owerri, Nigeria

Corresponding Author: P.C. Chikezie, Department of Biochemistry, Imo State University, Owerri, Nigeria
Tel: +2348039935327

ABSTRACT

Enzyme activity depends largely on environmental conditions such as temperature and pH. The stabilities of Polyphenol Oxidase (PPO) extracted from *Solanum melongenes* and *Musa sapientum* fruits pre-incubated in varying thermal and pH conditions were carried out. Enzyme activity was measured by spectrophotometric methods. The reaction mixture contained 3.5 mL of 0.20 M phosphate buffer (pH = 6.8), 1.0 mL of 0.75 mM catechol and 0.5 mL of enzyme solution. PPO$_S$. *melonogenas* and PPO$_M$. *sapientum* gave different temperature and pH optima. The temperature-activity profile of PPO$_S$. *melonogenas* and PPO$_M$. *sapientum* showed a strong positive correlation ($r = 0.907363$). At pH = 10.0, PPO$_M$. *sapientum* activity represented 65.3% decay in enzyme activity, whereas PPO$_S$. *melonogenas* represented 79.3% decay in enzyme activity. PPO$_S$. *melonogenas* and PPO$_M$. *sapientum* stability at pre-incubated temperatures of 20, 50 and 60°C and pH values of 3.5, 6.0 and 8.0 were measured. Residual activities of PPO$_S$. *melonogenas* and PPO$_M$. *sapientum* showed a strong positive correlations under the same experimental thermal conditions, with exception at 20°C ($r = 0.693975$). Specifically, pre-incubation of PPO$_M$. *sapientum* for $t = 90$ min at 60°C caused 18.4% decay in relative activity of PPO$_M$. *sapientum*. At $t = 90$ min, pre-incubation of PPO$_M$. *sapientum*, in pH = 3.5 caused decay in activity within the range of 30.8-36.1%, whereas PPO$_M$. *sapientum* pre-incubated in pH = 6.0 and pH = 8.0 gave decay in activity within the range of (1.5-9.8%) and (2.7-6.5%), respectively. PPO$_S$. *melonogenas* and PPO$_M$. *sapientum* showed relatively higher stabilities as the incubation pH tended towards alkaline conditions, whereas the two experimental temperatures (20 and 60°C) promoted destabilization.

Key words: Polyphenol oxidase, temperature, pH, *Solanum melongenes*, *Musa sapientum*

INTRODUCTION

Polyphenol Oxidase (PPO) is a collection of ubiquitous plant enzymes (EC 1.10.3.2, catechol oxidase or diphenol oxygen oxidoreductase (Klabunde *et al.*, 1998; Fawzy, 2005); EC. 1.14.18.1; monophenol oxidase, cresolase and tyrosinase (Mayer, 2006; Madani *et al.*, 2011)) responsible for undesirable browning reactions of fruits and vegetables. However, studies have shown that many plant PPOs lack monophenol oxidase (cresolase) activity, restricting potential substrates of the enzymes to diphenolic compounds such as catechol, 3, 4-dihydroxyphenylalanine and chlorogenic acid (Steffens *et al.*, 1994; Escobar *et al.*, 2008). Enzymatic browning is associated with oxidation of phenolic compounds in the presence of molecular oxygen to corresponding quinone intermediates.
that polymerize to form melanin and off-colour pigments (Da Silva and Koblitz, 2010). The kinetic properties of PPO extracted from various plant sources have been reported by several authors (Gowda and Paul, 2002; Chikezie, 2006; Gouzi et al., 2010).

PPO is a copper-metalloenzyme located in the chloroplast thylakoid membrane (Sommer et al., 1994) and can exist in an active or latent state (Mayer and Harel, 1979). PPO enzymes extracted from various plant tissues exhibit different characteristics and exit in multiple molecular forms (isoforms) (Marshall et al., 2000; Altunkaya and Gokmen, 2011; Unal et al., 2011). Isoenzymatic forms of PPOs are identified according to their physical, chemical or enzymatic properties such as electrophoretic mobility, temperature and pH optima, substrate specificity and isoelectric index (pI) (Yoruk and Marshall, 2003).

Enzyme activity depends largely on environmental conditions such as temperature and pH. Thermal and pH stabilities of PPO, as being reported here, describes the capacity of pre-incubated enzymes to withstand thermal and pH induced unfolding at specified experimental temperature and pH conditions. This study seeks to establish the thermal and pH conditions that promote stability of the PPOs extracted from S. melongenas and M. sapientum fruits.

MATERIALS AND METHODS
Collection and preparation of fruit samples: Fresh and disease free fruits of S. melongenas and M. sapientum were harvested from a private botanical garden in Umuoziri-Inyishi, Imo State, Nigeria between 17th-30th of July, 2012. The fruits were identified and authenticated by Dr. F. N. Mbegwu at the Herbarium in the Department of Plant Science and Biotechnology, Imo State University, Owerri, Nigeria. The two fruits were washed under continuous current of distilled water for 5 min and air dried at room temperature. The stalk (S. melongenas) and rind (M. sapientum) were removed manually. The samples were stored at -4°C until used for analyses.

Extraction and purification of PPO: Extraction and partial purification of PPO was according to the methods of Madani et al. (2011) with minor modifications. Ten grams (10 g) of the sample was homogenized in external ice bath, using Ultra-Turrax T25 (Janke and Kunkel, Staufen, Germany) homogenizer set in 80 mL of 0.1 M phosphate buffer (pH 6.8) containing 10 mM ascorbic acid for 180 sec at intervals of 60 sec. The homogenate was quickly squeezed through two layers of clean cheesecloth into a beaker kept in ice. The crude extract was rinsed with 200 mL of acetone (20°C) to eliminate phenolic compounds (Liu et al., 2007; Unal et al., 2011). The sample was centrifuged at 32000 g for 20 min at 4°C. Solid ammonium sulphate (NH4)2SO4 was added to the supernatant to obtain 80% (NH4)2SO4 saturation and precipitated proteins were separated by centrifugation at 32000 g for 30 min at 4°C. The precipitate was re-dissolved in 10 mL distilled water and ultra-filtered in a Millipore stirred cell with a 10-kDa membrane (Millipore 8050, Milan, Italy). The filtrate was dialyzed (cellulose membrane, Medicell Intl. Ltd., 6-2782) at 4°C against distilled water for 24 h with 4 changes of the water during dialysis. The dialyzed sample constituted the partial purified PPO extract and was used as the enzyme source from the corresponding segments of the two fruits. Protein concentrations were determined by the methods of Bradford (1976) using bovine serum albumin as standard at \(\lambda_{\text{max}} = 595 \) nm. One unit of PPO activity was defined as the amount of enzyme that causes an increase in absorbance of 0.001 mL^{-1} min^{-1} under the condition of the assay (Oktay et al., 1995).

Determination of PPO activity: PPO activity was measured immediately after the extract was partially purified. Enzyme assay was according to the methods of Qudsieh et al. (2002) with minor
modifications (Chikezie, 2006). Enzyme activity was determined by measuring the increase in absorbance using a spectrophotometer (U-2000 Hitachi, Japan) at 24°C. The reaction mixture contained 3.5 mL of 0.2 M phosphate buffer (pH = 6.8), 1 mL of 0.75 mM catechol and 0.5 mL of enzyme solution in a final volume of 5 mL. The mixture was quickly transferred into a cuvette and the change in absorbance was monitored at \(\lambda_{\text{max}} = 540 \) nm at a regular interval of 30 sec. The rate of the reaction was calculated from the initial linear slope of activity curves.

Measurement of temperature and pH optima of PPO activity: Activity of PPO was measured in assay mixture containing 0.75 mM catechol under varying temperatures within the range of 20-70°C. The enzyme activity was measured using 0.20 M phosphate buffer under varying pH conditions within the range of 5-10.

Effect of temperature and pH on PPO activity and stability: Purified enzymes extracted from *S. melongenas* and *M. sapientum* fruits were pre-incubated in varying temperatures of 20, 50 and 60°C. At regular time intervals of 30, 60 and 90 min, aliquots of the enzyme solution was withdrawn and assayed for PPO activity. The residual PPO activity was measured according to the following experimental conditions (PPO\textsubscript{S. melongenas}: pH\textsubscript{optimum} \(\approx 7.0 \) at \(T^\circ C \text{optimum} \approx 30; \) PPO\textsubscript{M. sapientum}: pH\textsubscript{optimum} \(\approx 7.0 \) at \(T^\circ C \text{optimum} \approx 40), at the given time intervals. At the same time intervals, measurement of PPO activity pre-incubated in varying pH values of 3.5, 6.0 and 8.0 were carried out. The residual PPO activity was measured according to the following experimental conditions (PPO\textsubscript{S. melongenas}: pH\textsubscript{optimum} \(\approx 7.0 \) at \(T^\circ C \text{optimum} \approx 30; \) PPO\textsubscript{M. sapientum}: pH\textsubscript{optimum} \(\approx 7.0 \) at \(T^\circ C \text{optimum} \approx 40). Residual PPO activity was determined in the form of percent residual PPO activity at the temperature and pH optima.

RESULTS

The fractionation steps and corresponding purification indices of the two PPO extracts is summarized in Table 1.

At the end of the purification steps, specific enzyme activity of PPO\textsubscript{S. melongenas} and PPO\textsubscript{M. sapientum} increased within the range of 0.314 to 8.11 U mg-1 protein and 0.292 to 7.65 U mg-1 protein respectively. Final enzyme activity of PPO\textsubscript{S. melongenas} was 0.154 U, whereas PPO\textsubscript{M. sapientum} gave 0.130 U (Table 1).

Temperature-activity profile of PPO\textsubscript{S. melongenas} and PPO\textsubscript{M. sapientum} is presented in Fig. 1. The temperature-activity profile of the two PPOs showed a typical bell-shaped curve. The PPO\textsubscript{S. melongenas} \(T^\circ C \text{optimum} \approx 30; \) PPO\textsubscript{S. melongenas} activity = 0.096±0.02 U, whereas PPO\textsubscript{M. sapientum} \(T^\circ C \text{optimum} \approx 40; \) PPO\textsubscript{M. sapientum} activity = 0.086±0.02 U. The temperature-activity profile of PPO\textsubscript{S. melongenas} and

<p>| Table 1: Properties of PPO extracted from S. melongenas and M. sapientum fruits at various purification steps |
|--------------------------------------|--------------------------------------|</p>
<table>
<thead>
<tr>
<th>Enzyme Fraction</th>
<th>(E_h (U))</th>
<th>(T_P (mg))</th>
<th>Specific (E_h (U \text{ mg}^{-1}))</th>
<th>% Yield</th>
<th>(E_h (U))</th>
<th>(T_P (mg))</th>
<th>Specific (E_h (U \text{ mg}^{-1}))</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude homogenate</td>
<td>0.308</td>
<td>0.980</td>
<td>0.314</td>
<td>100.0</td>
<td>0.234</td>
<td>0.802</td>
<td>0.292</td>
<td>100.0</td>
</tr>
<tr>
<td>Centrifuged at 32000 g</td>
<td>0.215</td>
<td>0.072</td>
<td>2.99</td>
<td>69.8</td>
<td>0.167</td>
<td>0.082</td>
<td>2.040</td>
<td>71.4</td>
</tr>
<tr>
<td>80% (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}</td>
<td>0.194</td>
<td>0.002</td>
<td>6.06</td>
<td>62.9</td>
<td>0.151</td>
<td>0.043</td>
<td>3.510</td>
<td>64.5</td>
</tr>
<tr>
<td>Ultra-filtration</td>
<td>0.162</td>
<td>0.002</td>
<td>7.36</td>
<td>52.6</td>
<td>0.133</td>
<td>0.029</td>
<td>4.590</td>
<td>56.8</td>
</tr>
<tr>
<td>Dialysis</td>
<td>0.154</td>
<td>0.019</td>
<td>8.11</td>
<td>49.9</td>
<td>0.130</td>
<td>0.017</td>
<td>7.050</td>
<td>55.6</td>
</tr>
</tbody>
</table>

\(E_h \): Enzyme activity; \(T_P \): Total protein
Table 2: Residual activity of PPO_{S melongena} and PPO_{M. sapientum} incubated in varying temperature

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>30 (min)</th>
<th>60 (min)</th>
<th>90 (min)</th>
<th>30 (min)</th>
<th>60 (min)</th>
<th>90 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.076±0.05</td>
<td>0.074±0.02</td>
<td>0.067±0.03</td>
<td>0.074±0.02</td>
<td>0.072±0.03</td>
<td>0.072±0.03</td>
</tr>
<tr>
<td>50</td>
<td>0.086±0.02</td>
<td>0.083±0.01</td>
<td>0.082±0.02</td>
<td>0.086±0.03</td>
<td>0.079±0.02</td>
<td>0.076±0.02</td>
</tr>
<tr>
<td>60</td>
<td>0.082±0.01</td>
<td>0.075±0.02</td>
<td>0.073±0.02</td>
<td>0.076±0.03</td>
<td>0.073±0.02</td>
<td>0.070±0.02</td>
</tr>
</tbody>
</table>

Values are means of 3 determinations±SD

Table 3: Residual activity of PPO_{S melongena} and PPO_{M. sapientum} incubated in varying pH

<table>
<thead>
<tr>
<th>pH</th>
<th>30 (min)</th>
<th>60 (min)</th>
<th>90 (min)</th>
<th>30 (min)</th>
<th>60 (min)</th>
<th>90 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>0.067±0.03</td>
<td>0.062±0.03</td>
<td>0.033±0.03</td>
<td>0.068±0.03</td>
<td>0.065±0.03</td>
<td>0.068±0.03</td>
</tr>
<tr>
<td>6.0</td>
<td>0.143±0.02</td>
<td>0.140±0.02</td>
<td>0.138±0.02</td>
<td>0.097±0.02</td>
<td>0.092±0.02</td>
<td>0.089±0.02</td>
</tr>
<tr>
<td>8.0</td>
<td>0.127±0.01</td>
<td>0.124±0.01</td>
<td>0.122±0.01</td>
<td>0.095±0.01</td>
<td>0.094±0.01</td>
<td>0.092±0.01</td>
</tr>
</tbody>
</table>

Values are means of 3 determinations±SD

Table 4: Correlation coefficient between residual activities of PPO_{S melongena} and PPO_{M. sapientum} incubated in varying temperature and pH

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Correlation coefficient (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.690375</td>
</tr>
<tr>
<td>50</td>
<td>0.846154</td>
</tr>
<tr>
<td>60</td>
<td>0.952217</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>0.989342</td>
</tr>
<tr>
<td>6.0</td>
<td>0.984013</td>
</tr>
<tr>
<td>8.0</td>
<td>0.953821</td>
</tr>
</tbody>
</table>

PPO_{M. sapientum} showed a strong positive correlation (r = 0.907963). At experimental temperature of 70°C, PPO_{S melongena} activity = 0.021±0.01 U; PPO_{S melongena} = 0.042±0.03 U, which represented 78.1% and 51.1% decay in enzyme activity respectively.

The pH-activity profile of the two PPOs showed a typical bell-shaped curve Fig. 2. The PPO_{S melongena} and PPO_{M. sapientum} gave pH optimum ~7.0. However, pH-activity profile of PPO_{S melongena} exhibited two peak values; pH7.0 and pH8.5. At experimental maximum pH = 10.0, PPO_{M. sapientum} activity = 0.034 U, representing 65.3% decay in enzyme activity, whereas PPO_{S melongena} = 0.025 U representing 79.3% decay in enzyme activity.

Table 2 and 3 showed residual activities of PPO_{S melongena} and PPO_{M. sapientum} incubated in varying temperature and pH. The residual activity of PPO_{S melongena} ranged between 0.86±0.02 U and 0.067±0.03 U; PPO_{M. sapientum} was between 0.080±0.03 U and 0.070±0.02 U. A cursory look at Table 2 showed that the decreasing levels of PPO_{S melongena} and PPO_{M. sapientum} depended on temperature and duration of incubation. Residual activities of PPO_{S melongena} and PPO_{M. sapientum} showed a strong positive correlations under the same experimental temperature conditions, with exception at 20°C, which gave a weak positive correlation (r = 0.693375) (Table 4).
Fig. 1: Temperature-activity profile of PPO activity extracted from *S. melongenas* and *M. sapientum* fruits

Fig. 2: pH profile of PPO activity extracted from *S. melongenas* and *M. sapientum* fruits

Similarly, PPO_{S. melongenas} and PPO_{M. sapientum} incubated in varying pH conditions exhibited decreasing residual levels of PPO activity with the progress of experimental time. Specifically, residual level of PPO_{S. melongenas} activity under the three experimental pH was in the order pH = 6.0>pH = 8.0>pH = 3.5 within the duration of the experiment (30<t<90). Table 4 showed PPO_{S. melongenas} and PPO_{M. sapientum} activities displayed a strong positive correlation under the same pH conditions.

Pre-incubation of PPO_{S. melongenas} at 50°C caused the lowest decay in relative activity compared to PPO_{S. melongenas} pre-incubated at 20 and 60°C. PPO_{S. melongenas} pre-incubated at 60°C exhibited lower decay in relative activity at incubation period t = 30 min and t = 90 min, compared to PPO_{S. melongenas} pre-incubated at 20°C. Conversely, PPO_{S. melongenas} pre-incubated at 60°C showed higher decay in activity compared to the enzyme pre-incubated at 20°C; at t = 60 min (Fig. 3).

Pre-incubation of PPO_{M. sapientum} at the three experimental temperatures caused increasing decay in the relative activity of the enzyme with the progress of time, which was in the order 20°C>60°C
Fig. 3: Percentage decay in enzyme activity of PPO extracted from *S. melongenas* incubated at varying temperature.

Fig. 4: Percentage decay in enzyme activity of PPO extracted from *M. sapientum* incubated at varying temperature.

>50ºC (Fig. 3). However, the increasing decays in activities of PPO
M. sapientum pre-incubated at 20ºC and 60ºC was not significantly different (p<0.05). Specifically, pre-incubation of PPO
M. sapientum for t = 90 min at 60ºC caused 18.4% decay in relative activity of PPO
M. sapientum (Fig. 4).

Pre-incubation of PPO
M. sapientum in pH = 3.5 caused decay in relative enzyme activity between the range of 56.3-78.8% within the experimental time (30≤t≤90) min. Decay in relative activity was significantly different among the PPO
M. sapientum incubated at the three experimental pH conditions, which was in the order pH = 3.5>pH = 8.0>pH = 6.0 (Fig. 5).

The decay in relative activity of PPO
M. sapientum pre-incubated in pH = 6.0 and pH = 8.0 were not profound compared to pH = 3.5 pre-incubation. At the end of experimental t = 90 min,
Fig. 5: Percentage decay in enzyme activity of PPO extracted from *S. melongenas* incubated at varying pH

Fig. 6: Percentage decay in enzyme activity of PPO extracted from *M. sapientum* incubated at varying pH

Pre-incubation of PPO_{*M. sapientum*} in pH = 3.5 caused decay in relative activity within the range of 30.8-36.1%, whereas PPO_{*M. sapientum*} pre-incubated in pH = 6.0 and pH = 8.0 gave moderate decays in relative activities, which was within the range of (15.9-8.8%) and (2.7-6.5%) respectively (Fig. 6).

DISCUSSION

From the present study, PPO extracted from the two fruits showed different pH and temperature optima (PPO_{*S. melongenas*}: pH_{optimum}~7.0 at T_{optimum}~30; PPO_{*M. sapientum*}: pH_{optimum}~7.0 at T_{optimum}~40) (Fig. 1 and 2). Worthwhile to note, PPO_{*M. sapientum*} T_{optimum}~40, was same as PPO extracted from lily *Carica papaya* and *Cucurbita pepo* (Ying and Zhang, 2008). Other reports by
several authors (Liu et al., 2007; Bello et al., 2011; Yemencioglu et al., 1999; Mizobutsi et al., 2010; Mahmood et al., 2009; Gaoa et al., 2011) gave diverse temperature and pH optima of PPOs extracted from various plant tissues. Specifically, Zheng et al. (2012) using 10 mM catechol as substrate reported that Vitis vinifera Thompson seedless PPO activity pH_{optimum} \textasciitilde 7.0 and T_{C_{optimum}} \textasciitilde 25. Nakamura et al. (1983) stated that T_{C_{optimum}} and pH_{optimum} of PPO extracted from Koshu Vitis vinifera were approximately 25°C and 6.0, respectively. Aylward and Haisman (1969) and Selles-Marchart et al. (2006) reported that differences in optimum pH for PPO activity depended on plant sources, extraction methods and purities of enzyme, buffers and substrates. However, most plants show maximum PPO activity near neutral pH values (Jimenez-Atienzar et al., 2004; Dogan and Dogan, 2004). These previous reports are consistent with the present report (PPO_{S. melongena}; pH_{optimum} \textasciitilde 7.0; PPO_{M. sapientum}; pH_{optimum} \textasciitilde 7.0) (Fig. 2). Remarkably, pH-activity profile of PPO_{S. melongena} exhibited two peak values; pH 7.0 and pH 8.5, which was an indication of the presence of isoenzyme based on similar reports by Bello et al. (2011). Using catechol as substrate, Bello and Sule (2012), reported variable T_{C_{optimum}} of PPO extracted from wide varieties of Tropical fruits and vegetables. Accordingly, Solanum aethiopicum: T_{C_{optimum}} \textasciitilde 50°C; Carica papaya: T_{C_{optimum}} \textasciitilde 40°C; Cucurbita pepo T_{C_{optimum}} \textasciitilde 50°C; Psidium guajava T_{C_{optimum}} \textasciitilde 30°C; Irvingia gabonensis T_{C_{optimum}} \textasciitilde 50°C. It is worthwhile to note that PPO T_{C_{optimum}} is dependent on substrate type (Mahmood et al., 2009). Notably, Ziyan and Pekyrdimic (2004) had earlier reported the effect of seven different substrates on the T_{C_{optimum}} of Pyrus communis PPO. Pre-incubation of PPO_{S. melongena} and PPO_{M. sapientum} under the two experimental conditions of temperature and pH gave diverse activity, which was a reflection of divergent level of PPO stability. The time dependent decay in PPO activity of two fruit extracts (Fig. 3-6) showed also the divergent capacities of the enzymes to withstand destabilizing effects of unfavourable temperature and pH conditions. This finding was an obvious indication that the three dimensional structure and functionality of enzymes are intricately connected with pH and temperature conditions (Rodwell and Kennelly, 2003). In a similar study, (Lacki and Duvnjak, 1999) reported that changes in pH level from 5.0 to 3.2 caused loss of PPO stability of white-rot fungus Trametes versicolor, which was comparable to that observed when the pre-incubation temperature was increased from 50 to 70°C. In another study, Yemencioglu and Cemeroglu (2003), showed the effect of ripening on thermal stability of Prunus armeniaca PPO and posited that thermal stability of PPO depended on the cultivar and stage of ripening and the presence of isoenzyme as reported by Yemencioglu et al. (1999).

The study by Mahmood et al. (2009) showed that PPO from different plant sources exhibited different thermal stabilities. The present study shows that decreasing levels of PPO_{S. melongena} and PPO_{M. sapientum} activity depended on temperature and duration of incubation (Table 2), which was a reflection of level of thermal stability of the two PPO extracts Mizobutsi et al. (2010); Bello and Sule (2012); Zheng et al. (2012). The decay in PPO_{S. melongena} and PPO_{M. sapientum} activity was more profound at 20 and 60°C (Fig. 3, 4). The present finding is in similarity with the reports of Maireos et al. (2008) in which they noted that PPOs from melon varieties (Amarillo and Charentais) were nearly completely inactivated after 30 min of incubation at 60°C (94% loss of enzyme activity). Mizobutsi et al. (2010) reported that Litchi chinensis pericarp incubated at temperature of 60°C for 10 min reduced the enzyme activity to scarcely detectable level. Furthermore, studies by Zheng et al. (2012) reported that Thompson seedless grape PPO exhibited thermal stability between 10 and 25°C, but showed significant activity loss at temperatures higher than 40°C and was completely inactivation at 70°C for 10 min. They further stated that thermal inactivation of PPO
showed a first-order kinetic with an activation energy (E a) of 146.1±10.8 kJ mol⁻¹ at pH = 6.0. Therefore, it is worthwhile to note that PPOs from different plant sources exhibited divergent thermal stabilities (Bello and Sule, 2012).

Similarly, the relationship between stability of PPO and pH showed a time depended decay in enzyme activity (Fig. 5, 6). Nakamura et al. (1983) had earlier noted that PPO extracted from Koshu Vitis vinifera was stable in the alkaline pH range (between pH = 7.0 and pH = 11.0). Again, Mizobutsi et al. (2010) reported that L. chinensis pericarp pre-incubation up to 35 minutes, at pH 2.5 or 9.5 caused complete inactivate the enzyme. They further stated that the acid pH was more effective destabilization agent. Likewise, reports of Gaoa et al. (2011) showed that PPO of leaf extract of Cleome gynandra L. exhibited optimal activity at pH = 8.0 and further noted a progressive PPO stability from pH 3.0 to 9.0. In similar characteristics, PPO₅. melongena and PPO₅. sapientum showed relatively lower decay in activity when pre-incubation pH tended towards alkaline conditions, whereas decay in activity was profound at acidic pH conditions. The relatively high decay of PPO₅. melongena and PPO₅. sapientum activities pre-incubated at pH = 3.5 (Fig. 5, 6) was an indication that acidic pH promoted enzyme destabilization, which provided strong evidence that denaturalization pH of the PPOs was near pH 3.5. However, the propensity of acidic pH to cause destabilization the enzyme extracts was in the order PPO₅. melongena > PPO₅. sapientum. Comparable reports on characterization of PPO from L. chinensis chinensis pericarp according to Liu et al. (2007) showed that incubation of the enzyme at pH = 3.1 for 1 day caused 49.50% loss in PPO activity and only 2.43% of the activity remained after 12 days of incubation, indicating that L. chinensis pericarp PPO was very unstable at pH = 3.1. They further posited that the PPO activity decayed more moderately when incubated at pH = 4.5 than when incubated at pH = 3.1. Furthermore, Bello et al. (2011) reported that crude PPO extracted from Solanum aethiopicum, Carica papaya and Cucurbita pepo showed instability in acidic pH but was more stable near neutral pH, which was in agreement with the findings of Kavrayan and Aydemir (2001) in which Mentha piperita PPO was found to be stable between pH 6.0 and 7.0.

REFERENCES

