Preparation and Evaluation of Lumpy Skin Disease Hyperimmune Serum Conjugated with Fluorescein

A. Razek, B. Omar and Magda M. Sayed

Veterinary Serum and Vaccine Research Institute, Abbassia, Cairo, Egypt
Central Laboratory for Evaluation of Veterinary Biologies, Abbassia, Cairo, Egypt

Abstract: Hyperimmune serum against Lumpy Skin Disease Virus (LSDV) was prepared by inoculation of the virus in successive doses into susceptible two calves with complete and incomplete Freund's adjuvant. Identity tests were applied by Agar Gel Precipitation Test (AGPT) and Indirect Fluorescent Antibody Technique (IFAT). Serum Neutralization Test (SNT) and ELISA tests were applied for titration and evaluation of the hyperimmune sera before conjugation with fluorescent. Total protein concentration of the prepared LSDV antisera was 0.8 g dl⁻¹. Separation of anti-LSDV immunoglobulins IgG were done using ammonium sulphate followed by conjugation with fluorescein isothiocyanate at pH 9.6. The anti-LSDV IgG conjugated fluorescein sterile and was used to detect LSDV in the MDBK cells and gave good results to dilution 1/20, while the reference conjugate to 1/30.

Keywords: Disease, hyperimmune, fluorescein, skin

INTRODUCTION

Lumpy skin disease is an infectious eruptive viral skin disease affecting cattle and caused by a Neethling strain of Capripox virus which is antigenically related to African sheep and goat pox viruses (Mathews, 1982; Abd El-Razek, 2003). Fluorescent Antibody Test (FAT) was most widely employed in LSD and Sheep-Goat Pox (SGP) diagnosis (Davies and Otema, 1978; Office International Epizootic, 1989, 1992). The isolation of LSDV from cattle in Egypt was confirmed by FAT by using anti-Capripox virus hyperimmune sera conjugated with FITC (House et al., 1990), which mentioned that FAT was rapid, accurate and sensitive serological technique for the diagnosis of pox viral diseases by detection of the intracellular viral antigen, in addition, FAT was used for rapid detection of the viral antigen in infected tissue culture.

The aim of this study was to prepare local, specific and economic conjugated antisera with FITC against LSDV for rapid diagnosis of this virus to safe time and cost.

MATERIALS AND METHODS

Animals

Two calves of about 1 year old were used for the preparation of LSDV hyperimmune serum. They were screened and proved that they are free from antibodies against LSDV.

Five adult Albino Swiss mice were used for the preparation of liver powder according to Narin and Marrack (1964). The liver powder was used to remove the non-specific fluorescence from the prepared conjugate.

Virus

Lumpy skin disease virus (Ismailia strain) screened MDBK, was kindly supplied from FADDL through Dr. J. House, the virus isolated during outbreak of cattle in 1989, at Ismailia governorate, Egypt.
It was propagated on lamb testicle cells, then propagated on MDBK cells for 60 passages (Aboul Saoud, 1996). The virus has a titre of \(6 \times 10^6 \) TCID\(_{50}\)/mL.

Fluorescein Isothiocyanate

It was obtained from Sigma, USA.

Dialysis Bag

It was obtained from Sigma, USA.

Ammonium Sulphate

It was obtained from Sigma, USA.

Conjugates

Fluorescein-Labeled Affinity Purified Antibody to Bovine IgG (H+L)

It was kindly supplied from FADDL through Dr. J. House. It was used as a reference positive control conjugate to evaluate the locally prepared one.

Anti-Bovine IgG (Whole Molecule) Peroxidase Conjugate

It was obtained from ICN biomedical, Inc, California, USA and used in solid phase ELISA.

Lumpy Skin Disease Virus Antigen and Antisera

Standard purified reference LSDV antigens and antisera were kindly supplied from FADDL Plum Island, USA through Dr. J. House.

Cell Cultures (MDBK)

The cells were obtained from Ames, Iowa Laboratories, USA and were grown and maintained as described by Manual of Methods for Virology.

Preparation of LSDV Hyperimmune Serum

LSDV hyperimmune sera were prepared according to the method of Puranchand *et al.* (1985).

Evaluation of Prepared LSDV Hyperimmune Serum

Purity Test

In accordance with the United States Code of Federal Regulation (CFR). It was applied in Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Abbassia, Cairo.

Identity test

The LSDV antigen was identified by IFA using reference LSDV antisera as described by Davies and Otama (1978).

Agar Gel Precipitation Test (AGPT)

It was applied according to the method described by Sharma and Dhanda (1972) and Abd EI-Razek (1999).

Serum Neutralization Test (SNT)

This was carried on microtitre plate 96 well using cell culture method according to House *et al.* (1990) to screen the test animals before inoculation and to estimate the induced antibody titre in the prepared hyperimmune serum.
Enzyme Linked Immunosorbent Assay (ELISA)

Solid phase ELISA (indirect method) was done according to the method described by Williams (1987).

Precipitation of the Immunoglobulin

It was carried out by using a saturated solution of ammonium sulphate (75%) according to Nair and Marrack (1964), the globulin concentration was determined and adjusted to be 20 mg mL⁻¹ in Phosphate Buffer Solution (PBS).

Estimation of Total Protein

Measurement of the amount of total protein concentration of LSDV antiserum, was done by calorimetric method using spectrum diagnostic total protein reagent and read absorbance of serum at 540 nm, according to Cannon et al. (1974) and Tietz (1994).

CALCULATION

\[
\text{Serum protein concentration (g dL}^{-1}\text{)} = \frac{A_{\text{specimen}}}{A_{\text{standard}}} \times 6
\]

Conjugation of the Prepared Immunoglobulins with FITC

The immunoglobulins were adjusted to be at least 20 mg mL⁻¹ PBS, then diluted in equal volume of chilled carbonate-bicarbonate buffer pH 9.6. One milli gram of FITC powder was dissolved in 1 mL cold carbonate-bicarbonate buffer. Hundred microliter of diluted FITC were mixed with 100 mg immunoglobulins in PBS and left for 24 h at 4°C for complete conjugation, then pH was adjusted to 9 with sodium hydroxide solution. The non-specific FITC was removed by using 1% mice liver powder and dialyzed against several changes of PBS of pH 7.4 at 4°C.

Evaluation of the Prepared Immunoglobulins with FITC

Purity test

The prepared IgG with FITC was tested against bacterial, fungal, mycoplasma and extraneous virus contaminants.

Fluorescent Antibody Technique (FAT)

It was carried out according to Davies and Otama (1978), preparation of infected and non-infected control cover slips cultured with MDBK cells, different dilutions of conjugation were used up to 1/50.

RESULTS AND DISCUSSION

This study was designed to prepare hyperimmune sera against LSDV conjugated with fluorescein isothiocyanate to be used for virus diagnosis and titration in a trial to provide a specific local reagent to easily detection of LSDV to save time and costs.

The results of AGPT to prepared LSDV hyperimmune sera were found to contain specific LSDV precipitating antibodies (Table 1). These results were in agreement with those obtained by Sharma and Dhanda (1969, 1972) and Sharma et al. (1987).

The prepared LSDV hyperimmune sera was found to contain specific LSDV neutralizing antibodies of a titre 32 and 400 for previous viruses respectively as detected by SNT and ELISA. These results agreed with those obtained by Martin et al. (1975), Sharma et al. (1987), Office International Epizootic (1989) and Agag et al. (1992).
Table 1: Evaluation of prepared LSDV hyperimmune sera before conjugation

<table>
<thead>
<tr>
<th>Purification</th>
<th>Identifying test</th>
<th>Titrations before conjugation</th>
<th>Total concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterile</td>
<td>ASPT</td>
<td>IFAT</td>
<td>ELISA</td>
</tr>
<tr>
<td></td>
<td>2⁷</td>
<td>32⁷</td>
<td>400⁷</td>
</tr>
</tbody>
</table>

Table 2: Titrations of prepared anti-LSDV (IgG) fluorescein conjugate and reference anti-bovine IgG fluorescein conjugate

<table>
<thead>
<tr>
<th>Conjugate dilution</th>
<th>Prepared anti-LSDV IgG conjugate with FITC</th>
<th>Reference anti-bovine IgG fluorescein conjugate</th>
<th>Control ⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>+++ ⁸</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>1/5</td>
<td>+++ ⁷</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>1/10</td>
<td>++</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>1/15</td>
<td>+⁹</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>1/20</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>1/50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

⁸ Strong positive reaction, ⁷ Weak positive reaction, ⁹ Non-specific negative non-infected cells.

Fig. 1: MDBK cells infected with LSDV and stained with anti-LSDV conjugated fluorescein, notice that apple green fluorescence.

The total protein in the prepared LSDV antisera was 0.8 g DL⁻¹ and this amount of protein was satisfactory to use in conjugation with fluorescein. These results were in agreement with Nowotony (1979). The total protein of the negative sera was less than 0.8 g DL⁻¹. So, it was clear that the globulin as the immune protein forming the antibodies appeared to be higher than negative sera of the non-inoculated animals. These results are in agreement with those obtained by Kataria and Sharma (1993). The titre of conjugated LSDV IgG antibodies reached 1:32 which of good titre to use for conjugation (Nowotony, 1979).

The conjugated anti-LSDV hyperimmune serum demonstrated typical fluorescence staining reaction (apple green fluorescein up to 1:20) (Table 2).

Negative control cells showed dull green staining (negative reaction) when reacted with both conjugated at different dilution (Fig. 1). Moreover, detection of LSDV viral antigen intracytoplasmic of infected cells were also recorded by Davies and Otema (1978), House et al. (1990) and Office Internatioal Epizootic (1992).
CONCLUSION

From this result, we can say that we could prepare anti-LSDV IgG conjugated with fluorescein of low price, rapid (within 1 h), good titre and good quality and quantity in pure form to be used for diagnosis of LSD infection and for identity evaluation of produced vaccine.

REFERENCES