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ABSTRACT

Modern agricultural practices result in indiseriminate use of various agrochemiecals, which
usually enter into the aquatic environment. The use of agrochemicals in the field has the potential
to change the aquatic medium, affecting the tolerance limit of aquatic fauna and flora, as well as
creating danger to the ecosystem. These agrochemicals adversely affect the non-target crganisms,
especially plankton and fish. The present study reports the acute and sublethal toxicity of pesticides
on plasma protein, acetylcholinesterase, hormones, histopathology, changes in gill, ventillatory
frequency and stress protein level of freshwater fishes. The alterations of the hormonal levels may
be used as a potential biomarker and also can establish the ability of endocrine tissues to respond
to their appropriate releasing factors. Heat Shock Proteins (HSPs) are detected in all cells,
prokaryotic and eukaryotic. In vive and in vitro studies have shown that varicus stressors
transiently increase production of HSPs as protection against harmful insults. Increased levels of
HSPs occur after environmental stresses, infection, normal physiological processes and gene
transfer.
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INTRODUCTION

Pesticides have brought tremendous benefits to mankind by increasing food production and
controlling the vectors of man and animal diseases. At the same time use of these pollutants has
posed potential health hazards to the hife of fishes. Pesticides are major cause of concern for aquatic
environment because of their toxicity, persistency and tendency to accumulate in the organisms
{Joseph and Raj, 2010). The impact of these pesticides on aquatic crganisms is due to the movement
of pesticides from various diffuse or point sources. These pesticides are posing a great threat to

aquatic fauna especially to fishes, which constitute one of the major sources of protein rich foed for
mankind (Sharma and Singh, 2007).

BIOCHEMICAL CHANGES IN BLOOD

Blood is highly susceptible to internal and external environment fluctuations because itis
the vehicle for the transport of such pollutants (Blaxhall, 1972). Metals are Transported in the
bloed stream by binding to specific plasma proteins (Joseph et al., 2010). The fish serves as
bio-indicator of water quality and the impact of the pesticide can be well understocd by analyzing
either blood or serum of the fish, because blood is a pathophysiological reflecter of whole body
{Sharma and Singh, 2004, 2006). The toxic effect of pesticides to the blood of fishes has been
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studied by many researchers (Dawson, 1935). The toxicity of chloropyrifos has been observed
on Erythrocyte Sedimentation Rate (ESR) (mm h™) in fish, Channa punctatus (Malla et al.,
2009). An increase in ESR (mm h™) has been reported in Clarias batrachus after exposure to savin
{Kumar and Benerjee, 1990). Reduction in total serum protein content induces proteinaemia and
may be correlated with reduced protein synthesis by liver (Sharma ef al., 2009). There was a
significant decease in the total serum protein of cyprinus carpio at 0.1 and 0.001 mL curacron. A
significant decrease was observed up to day 21 (Joseph and Raj, 2010). Spontaneous lesions
of coeytes can also occur randomly under normal conditions, as reported in zebrafish studies and
this is a phenomencn of fish pathology that has been broadly investigated (Rossteuscher ef al.,
2008), The effects of assimilation of DDT from the water column by fish and this having a mild
effect on the parental gonads and direct effects on the F1 generation survival and wviability

{(Mlambo et al., 2009).

ACETYLCHOLINESTERASE

AchE activity is more sensitive for OPs and carbamate pesticides than other contaminants, but
the inhibition of this enzyme have been alsc used to indicate the exposure and effects of other
contaminants in fishes. It has been shown that the addition of crude o1l to brain homogenate in
amounts equivalent to sediment concentration inhibited AChE activity in fishes (Rodriguez-Fuentes
and Gold-Bouchot, 2000). Minier ef al. (2000) reported that musecle AChE of flounder from polluted
sites with high level of FAH was inhibited by 40%. Also, a reduction of 40% of brain AChE was
observed in Mullus barbatus from three pollutes sites of Salento Apulia (Italy), related with
presence of great variety of compounds (PAH, heavy metals and pesticides) present in the sediment
{Lionetto et al., 2003). The reduction in swimming performance in fish after exposure to Ops could
be attributed to the inhibition of AChE (Rao, 2006; Rao ef al., 2005). The present results illustrate
that after prolonged exposure to PF induced tissue-specific peroxidative damage in brain, gill,
viscera and muscle tissues of O mossambicus and the most affected tissue was gill. Earlier
studies show that LPO may be induced in various tissues by a variety of environmental pollutants
{(Ahmad et al., 2000). Significant depression of cholinesterase activities in brain and liver tissues
of O. niloticus following single and multiple exposure of chlorpyrifes (an organophosphate

insecticide) and carbosulfan (a carbamate insecticide) in the laboratory was reported by
Chandrasekara and Pathiratne (2005).

HISTOPATHOLOGY

Histopathelogical changes have been widely used as biomarkers in the evaluation of the health
of fish exposed to contaminants, both in the laboratory (Wester and Canton, 1991) and field studies
{(Hinton et al., 1992; Schwaiger et al., 1997; Teh ef al., 1997). One of the great advantages of using
histopathological biomarkers in environmental monitoring is that this category of biomarkers allows
examining specific target organs, including gills, kidney and liver, that are responsible for vital
funections, such as respiration, excretion and the accumulation and biotransformation of xencbiotics
in the fish (Gernhofer et al., 2001). Furthermore, the alterations found in these organs are
normally easier to identify than functional ones (Fanta ef @l., 2003) and serve as warning signs of
damage to animal health (Hinton and Lauren, 1990).

GILL AS A BIOMARKER
The fish gill is a multifunctional organ involving gaseous exchange acid-base balance, ionic
(Na™, ClI” and Ca,”) transport and nitrogenous waste excretion (Perry, 1997). The gills consist of
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four branchial arches each bearing pairs of primary filaments in which rows of secondary lamellae
are situated. The filaments and lamellae are covered by epithelial cells (i.e., pavement cell (PVC),
Chloride Cell (CC) and mucous cell) supported by a complex system of blood vessels (Laurent, 1984).
Hence, the gill epithelium provides an extensive surface of contact with the environment to
facilitate 1on transport and gaseous exchange. (Gill surfaces are the first target of water-borne
metals (Spicer and Weber, 1991). The micro-environment of the gill surface consists of an
epithelial membrane which primarily contains phospholipids covered by a mucous layer
(Bolis et al., 1984). The constituents of the gill epithelia will be fully ionised, resulting in
negatively charged gill surfaces and potential gill-metal interaction sites (Reid and MacDonald,
1991; Joseph and Raj, 2010),

VENTILATORY FREQUENCY

Ventilatory Frequency (VF) represents a good alternative for alert or stressful conditions
assessment in fish, because it has several advantages. Investigations have shown that VF is
changed quickly in response to disturbances imposed, as demonstrated in fish subjected to social
stress (Volpato et al., 1989; Alvarenga and Volpato, 1995), strobe light (Sager ef al., 2000),
predation risk (Barreto et al., 2003; Hawkins ef al., 2004a, b; Queiroz and Magurran, 2005) and
confinement (Barreto and Volpato, 2004; Brown et al., 2005). Moreover, VF is an inexpensive and
easily measurable parameter, because it can be visually counted, so requiring no sophisticated
equipment. It is also a non-invasive behavioural tool, avoiding painful or stressful technique to be
used for stress assessment, such as blood sampling.

HORMONES

In fish, hormones are critical towards maintaining proper physiclogical function and amongst
the many hormones found 1n fish the thyroid hormoenes (thyroxine (T4) and triiodothyronine (T3))
are known to play an important role in fish growth (Higgs et al., 1982; Miwa and Inui, 1985) and
early development (Brown, 1997). When fish are exposed to stressors the levels of thyroid hormones
have been demonstrated to be decreased (Pickering, 1993; Deane ef al., 2001) and chemical
pollutants have been reported to detrimentally affect thyroidal hormone status in a number of fish
species (Xu et al., 2002; Brown et al., 2004; Scott and Sloman, 2004; Van der Ven ef al., 2006).

STRESS PROTEINS

Exposure of living beings to sub lethal levels of environmental pollution has been shown to
trigger several defense mechanisms at the cellular and molecular levels. Very important in this
respect 1s the cellular accumulation of stress proteins which mainly act as molecular chapercnes
{Ellis and Vander Vies, 1991; Welch, 1993; Bauman et al., 1993; Feder and Hofmann, 1999).
Among stress proteins, the HSF70 group (1.e., HSP72, HSP73) has been widely studied since it 1s
regularly over expressed in response to a wide variety of natural, experimental or anthropogenic
aggressors viz., heat shock, alcohols, oxidative stress, radiations, heavy metals, arsenic, pesticides
and others (Sanders and Martin, 1993; Fulladosa et al., 2002; Gaubin et al., 2002; Delaney and
Klesius, 2004). Besides, the stress-related induction of HSP 1s a general phenomenon observed in
all animal species studied so far (Feder and Hofmann, 199%9). Metallothioneins (MTs), ubiquitous
low molecular weight cysteine-rich proteins, are also considered as stress proteins since they protect
the cells against excessive metal uptake (Bauman et al., 1993) by virtue of their high proportion
of -SH groups which sequester the metallic ions (Kagi and Schaver, 1988; Klaassen ef al., 1999).
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As a consequence, MTs should be logically responsive to metal poisoning. Studies carried out in low
vertebrates are already numerous and expression of stress proteins in different fish species in
response to various stressors has been investigated by many authors (Segner, 1998; Iwama ef al.,
1998, 1999). For instance, several heat shock proteins have been detected after exposure of various
kinds of fish cells to heat shock, arsenate and several metal ions (Kothary and Candido, 1982;
Heikkila et al., 1982; Misra et al., 1989; Currie ef al., 1999, 2000), Overexpression of MTs has also
been studied in different fish species (Carbonell et al., 1998; Dethloff et al., 1999) and its use as a
biomarker for monitoring metal pollution in the environment was proposed (Hamilton and Mehrle,
1986). Stress protein mRNA were recently shown to be actively produced in red blood cells of the
brook trout submitted to a heat shock (Lund ef af., 2003). Besides, fish erythrocytes display high
levels of aerchic metabolism that supports many cellular processes, including an active protein
synthesis (Currie and Tufts, 1997). Heat shock proteins (hsps), in particular hsp 80 and hsp 70,
have been suggested as suitable biomarkers of the exposure to and effects of environmental
contaminants (Sanders, 1990). The heat shock proteins are families of proteins which are classified
by their molecular weight. They are also known as molecular chaperones (Kllis,1987) for their
constitutive roles in protein synthesis.

HEAT SHOCK PROTEINS

Organisms respond to proteo toxicity with the expression of stress proteins which are able to
repair partly denatured proteins. Proteins belonging to the Heat Shock Protein (HSF) families have
been demonstrated to play a critical role in the stress response of fish and it has been extensively
reported that expression profiles of HSP families can be modulated by abiotic (Iwama ef al., 1998,
Basu ef al., 2002), biotic, heavy metal (Iwama et al., 1998) and organic pollutants. The role of HGP
during stress is related to a cytoprotective function as these proteins can act to prevent and repair
protein damage (Ananthan et al., 1986). Heat shock protein levels have been shown to be
modulated in fish cells and tissues upon exposure to a vast array of stressors (Iwama ef al., 1998),
Of all the heat shock protein families, HSP70 has been the most comprehensively studied, due to
its major importance in cytoprotection (Ryan and Hightower, 1994) and recently it was shown
that elevated HSFP70 is critical in protection of sea brim cells against chemical induced apoptoesis
(Deane et al., 2001). The accumulation of these heat shock proteins has been linked to the intensity
of stress, these proteins have heen regarded as a suitable biomarker in assessing reactions of biota
to environmental and physiological stressors (Hightower, 1991; Sanders, 1993).

DISCOVERY OF HSPS

The first report on HSPs appeared in 1962 after Drosophila salivary gland cells were exposed
to 37°C for 30 min and then returned to their normal temperature of 25°C for recovery, a puffing
of genes was found. All HSP-70s bind ATP (Chappell et al., 1987; Milarski and Morimote, 1989)
have occcurred in the chromosome in the recovering cells (Ritossa, 1962) accompanied by an increase
in the expression of proteins with molecular masses of 70 and 26 kDa (Tissieres et al., 1974).

CLASSIFICATION OF HSPS

The best understood HSPs are those with molecular masses of 60, 70, 90 and 110 kDa. These
major HSPs are expressed at 378°C in the absence of heat shock. HSP-70 and -90 are observed in
all organisms, whereas HSP-110 is present mainly in mammalian cells. A second group of HSPs
{sometime referred as rmnor HS5Ps) are induced under conditions of glucose deprivation and include
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glucose-regulated proteins (GRP) 34, 47, B8, 75, 78, 94 and 174 kDa (Sciandra and Subjeck, 1983).
A third group of HSPs is the low-molecular-mass HSPs; these have molecular masses of about
20 kDa; these are found at elevated levels in heated Drosophila cells (Tissieres et al., 1974) and
ischemic cardiomyocytes (Mestril ef al., 1994). A small portion of their amino acid sequence is similar
to mammalian a-Crystalline (Ingolia and Craig, 1982). HSP-70s are highly conserved and
demonstrate a 60-78% base identity among eukaryotic cells and a 40-60% identity between
eukaryotic HSP-70 and Fscherichia coli DnakK, similar to the HSP-70 (Bardwell and Craig, 1984;
Craig, 1985; Lindquist, 1986; Caplan et al., 1993).

INDUCTION AND FUNCTIONING OF HEAT SHOCK PROTEINS

Heat shock protein expression also be induced by the presence of denatured proteins
(Edington et al., 1989). Increased expression of heat shock proteins has also been called a stress
response, because hsps can be increased or induced after exposure to some environmentally-
relevant stressors, including contaminants such as heavy metals (Cd, Cu, Cr, Hg, Ni, Pb and Zn),
tributyltin,organophosphate and organochlorine pesticides and other organic contaminants
including benzene, 1-chloro-2,4-dinitrobenzene, 2,4-dichloroaniline, 2 4-dinitrobenzene,
hexachlorobenzene, pentachlorophenol and trichloroethylene (Sanders, 1993). The common mode
of action of these diverse stressors seems to be that they are proteotoxic (Hightower, 1991),
resulting in damage to proteins. Basal expression of hsps has shown to be essential in the early
embryonic development and in resting cells. However, over expression of hsp70 in normal
drosophila cells slowed down the growth rate, suggesting that over expression of Hsps in various
cells under normal physiological conditions may be of no significance. Molecular chapercnes
orchestrate when and where proteins fold and unfold in the cell andif there 1s serious misfolding
and aggregation caused by environmental stress or pathology, they can act as sensors to direct
these cells to apoptosis. In maintaining the protein homeostasis, Hsps serve at various levels, such
as: (1) protect other proteins against aggregation; (2) prevent protein aggregation; (2) assist the
folding of nascent proteins or refolding of damaged proteins; (4) target severely damaged proteins
to degradation and (5) in case of excessive damage, sequester damaged proteins to larger
aggregates (Soti et al., 2005). The importance of chaperones in promoting and maintaining the
native confirmation of cellular proteins is of utmost importance due to the toxic consequences of
protein misfolding and aggregation. Cellular accumulation of stress proteins which mainly act as
molecular chaperones (Ellis and Vander Vies, 1991; Welch, 1993; Bauman et af., 1993; Feder and
Hofmann, 1999). Among stress proteins, the HSP70 group (1.e., HSP72, HSP73) has been widely
studied since it is regularly over expressed in response to a wide variety of natural, experimental
or anthropogenic aggressors (heat shock, alcohols, oxidative stress, radiations, heavy metals,
arsenic, pesticides and others) (Welch, 1993; Sanders and Martin, 1993; Fulladesa et al., 2002;
Graubin et al.,, 2002; Delaney and Klesius, 2004). Studies carried out in lower vertebrates are
already numerous and expression of stress proteins in different fish species in response to various
stressors has been investigated by many authors (Segner, 1998; Iwama ef al., 1998, 1999). For
instance, several heat shock proteins have been detected after exposure of various kinds of fish cells
to heat shock, arsenate and several metal 1ons (Kothary and Candido, 1982; Heikkila ef al., 1982;
Misra et al., 1989). Protein aggregation associates a number of acute and chronic
neurodegenerative conditions. Hsps reduce the risk of formation of toxie oligomeric assemblies of
the respective disease proteins such as tau and amyloid-b in Alzheimers disease, a-synuclein in
parkinsons disease huntingtion in Huntingtons disease (Wyttenbach and Arrigo, 2006). Prions are
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nothing but infectious particles of protein, which cannot be inactivated by measures that modify
nucleic acids. Hsp family members, especially Hsp 140, were shown to inhibit prion protein
aggregation independent of ATP. Overexpression of MTs has also been studied in different fish
species (Carbonell ef al., 1998; Dethloff ef al., 1999) and its use as a biomarker for monitoring metal
pollution in the environment was proposed (Hamilton and Mehrle, 1986). Stress proteins mRNA
were recently shown to be actively produced in red blood cells of the brook trout submitted to a heat
shock. Besides, fish erythroeytes display high levels of aerobic metabolism that supports many
cellular processes, including an active synthesis of protein. A correlation between levels of heavy
metals and metallothioneins in human blood (Szitanyi et al., 1996). The possibility of using MTs
gene activation in Peripheral Blood Lymphocytes (PELs) in humans as a biomarker of susceptibility
to cadmium exposure (Lu et al., 2001). Studies carried out on mammalian PBLs of grey seal
demonstrated that MTs levels can be induced by Zn (Pillet ef af., 2002). However, when using fish
as a biclogical target, only effect of copper in blood and biochemical parameters were analyzed

{Dethloff et al., 1999),

STRESS RESPONSE BY HSPS

All HSP-70s bind ATP (Chappell ef al., 1987, Milarski and Morimoto, 1989). HSPs are bound
to HSFs that reside in the ecytosol of mammalian cells under unstressed conditions
{(Schlesinger, 1990). Under stress conditions such as heat shock and 1schemma, HSFs are separated
from the HSPs. When HSFs are then phosphorylated by PKC or other serine/threonine kinases,
they form a homotrimerie structure (Kroeger et al., 1993). The trimers enter the nucleus, bind to
HSEs located on the promoter region of HSP genes and become further phosphorylated by HSF
kinases (Price and Calderwood, 1991). Transcription is then initiated,followed by translation. The
newly synthesized HSPs bind to HSF's to prevent further synthesis of HSPs (Li ef al.,1995).

CONCLUSION

Long term exposure of organisms to pesticides means a continuous health hazard for the
population. So, human population is at high risk by consuming these toxicated fishes. This implies
that one should take the necessary precaution in the application of pesticides to protect the life of
fish and other aquatic fauna. It is known that both environmental and pathclogical stresses cause
an increase in HSPs of host cells. It 1s believed that levels of HSP-70s might be used as a measure
of stress. These crganisms can be used to detect the envireonmental stressors. It is likely that
approaches using molecular biology techniques will revolutionize toxocological applications that are
cheaper and do not require the use of animals to detect environmental stressors.
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