Frequencies and Antibiotic Susceptibility
Patterns of Bacteria Causing Mastitis among
Cows and Their Environment in Khartoum State

1Ibtisam E.M. El Zubeir, 2P. Kutzer and 1O.A.O. EL Owni
3Department of Dairy Production, Faculty of Animal Production,
University of Khartoum, P.O. Box 32, Post Code 13314, Sudan
2FU of Berlin, Germany

Abstract: The present study was conducted to investigate mastitis causing organisms in
dairy cows and to correlate them with the isolates from udder skin of cows as well as their
environment (air). The data revealed higher incidences of subclinical mastitis than the clinical
form of the disease. Staphylococcus aureus (11.5%), Streptococcus agalactiae (0.83%),
Escherichia coli (7%), Klebsiella pneumoniae (9.4%) and Enterococcus faecium (2.5%), were
the important pathogens isolated from mastitic cows’ milk samples. The udder skin of the
cows revealed the presence of Pseudomonas aeruginosa (9.5%) and Staphylococcus aureus
(0.95%). However, the samples sediment from the air of the cows fences, revealed as a
pathogen, only the presence of S. aureus (0.95%). Other non-serious mastitis pathogens were
also found, in the three groups of samples, during the present study. Antibiotic
susceptibility tests were undertaken. The most prominent resistant was those of S. aureus
towards tetracycline (79.41%) followed by penicillin (29.41%) and amoxicillin- clavulenic
acids (20.59%). The susceptibility of E. coli showed resistance towards erythromycin
(76.47%), tetracycline (29.41%), streptomycin and sulfamethizol-trimethoprim (17.65%) and
kanamycin (5.88%). Similarly Enterococcus faecium, showed multiple range of resistant to
the drugs tested.

Key words: Mastitis pathogens, antibiotic susceptibility, incidence, cows, Sudan

Introduction

Mastitis is the inflammation of the mammary glands. It is cause by the invasion of the quarter,
usually, via the teat canal, with a variety of microorganisms in all species of mammals (Hunter, 1994).
Bovine mastitis is a complex disease; it involves the three bio systems; the microorganisms, the
environment and the host (the cow); (Heeschen, 1984). Moreover, the rates of clinical mastitis and
severity of clinical signs differed among the herds, seasons of the year, parity groups and stages of
lactation (Hogan et al., 1989).

Bartlet et al. (1992) reported an increase prevalence of coliform and environmental streptococcal
infection, due to improper management Moreover, Kamata et al. (1990) identified 54.7% of coagulase-
negative Staphylococci Corynebacterium spp., Gram-negative bacteria and S. aureus in 30.2, 28.5 and
25% were isolated as mastitis pathogens respectively, by the same author. They also could isolate

Corresponding Author: Dr. Ibtisam E.M. El Zubeir, Department of Dairy Production, Faculty of Animal Production,
University of Khartoum, P.O. Box 32, Post Code 13314, Sudan

101
Streptococcus spp. (Streptococcus agalactiae, St. dysgalactiae, St. uberis and St. bovis) in about 33.7%. In another trial Bezak, (1998) determined 15.3% coliforms, 27.1% Staphylococcus spp. and 26.6% Streptococcus spp., while Sargeant et al. (1998) isolated Staphylococcus aureus (6.7%), Streptococcus agalactiae (0.7%), other Streptococcus spp. (14.1%), coliforms (17.2%), Gram-positive Bacilli (5.5%), Corynebacterium bovis (1.7%) and other Staphylococcus spp. (28.7%). Similarly, Sobhani et al. (1997) in 35.3% of bacteriological positive milk samples could detect S. aureus, Enterococci, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus agalactiae in 8.9, 8.2, 8.1 and 4.9%, respectively, for all positive milk samples. Similarly Kudinha and Simango (2002) reported that in Zimbabwe, the most frequent pathogens isolated in clinical mastitis were the enteric bacteria (31.4%), followed by coagulase negative staphylococci (22.9%) and then Staphylococcus aureus (17.1%), whereas in subclinical mastitis S. aureus (34.2%) and coagulase-negative staphylococci were (33.2%) the most common. Bacillus species were only isolated in milk samples from subclinical mastitis.

The lack of appropriate mastitis therapy results in the development of resistant organisms to antibiotics (Linhart and Waiskopf, 1989), especially in improper treated cows (Jonsen and Eberhart, 1981; Robinson et al., 1988). Moreover, use, misuse and often abuse of antimicrobial agents has encouraged the evolution of bacteria towards resistance, resulting into therapeutic failure (Straut et al., 1995). Furthermore resistance can be transferred between species of different genera (MAFF, 1998). The highest resistance was to tetracycline (17.6%), followed by lincomycin (13.7%). About 8% of the isolates were resistant to both penicillin and streptomycin (Kudinha and Simango, 2002)

The aim of the present study was to investigate the occurrence of mastitis incidences, investigating of the causative agents of mastitis, to test their susceptibilities to antibiotics and to correlate the isolates from udder skin of the cows and from their environments (air samples) in dairy cows in Khartoum State.

Materials and Methods

Farms

The data for the present study was collected during July to September 1998 on Sudanese dairy cows from Khartoum State (Sudan), while the laboratory work was done at Berlin, Germany during October 1998 to March 1999. Dairy land farm (Friesian cows, closed system), from Khartoum and other herds from Khartoum North and Omdurman (local and cross breeds, open systems) were selected for the present study.

Diagnosis of Mastitis

California Mastitis Test (CMT) was done in the selected dairy farms. Physical examinations were also conducted on all CMT-positive cows. Microbiological examinations were carried out in all mastitis-suspected milk samples.

Incidence of Mastitis in the Quarters of the Examined Cows

According to CMT results, the quarters of each diseased cow were divided into clinically infected (subdivided as watery, hemorrhagic or purulent), subclinically infected and healthy quarters. Dry quarters, mostly as a result of previous infections, were calculated. Similarly, the rates of infection in the quarters, depending on its location, were also estimated.
Isolation and Identification of Mastitis Causing Agents
Collection of Milk Samples
Aseptic quarter milk samples from suspected cases were collected into sterile bottles. Swabs were also collected from cow’s udder skin aseptically; Mannitol salt agar plates were open at different sites of the farm for sedimentation of pathogenic Micrococi. All milk samples were cooled and transferred to the laboratory in an ice-box (-4+0°C).

Identification of the Organisms
Isolation and identification of the collected bacteria, were carried out according to Cowan and Steel’s manual (Barrow and Feltham, 1993), the difficult cases were done after Berg Manuals (Holt et al., 1994). A loop (50 μL) of the sample was streaked on a quadrant of both a blood and MacConkey agar plates. After incubation (24-48 h, 37°C), mastitis-suspect colonies were picked up, subcultured and identified according to their morphological, biochemical and serological properties. *Staphylococcus aureus*, *E. coli* and *Streptococcus* spp. were identified with the API 20Staph, API 20E and API 20Strep, respectively, according to the manufacturer’s instructions (Bio Merieux, France).

Antibiotic Susceptibility Tests
Mastitis causing pathogens were examined for their resistant patterns by the agar diffusion assay (German DIN standard), similarly, the NCCLS standard and the manufacturer values, were used, for antibiotics which were not found in DIN standard. The following antibiotics were selected to test the susceptibilities of the isolates. (enrofloxacin 5, nalidixic acid 30, oxacillin 5, erythromycin 15, streptomycin 25, kanamycin 30, gentamycin 10, lincomycin 15, neomycin 30, penicillin 6, amoxacillin-clavamic acids 20+10, sulfamethoxazol-trimetoprim 23.75+1.25 and tetracycline 30 μg.). Zones of growth inhibition around the antibiotic disks were evaluated after over night incubation on Muller-Hinton agar at 37°C as sensitive, intermediately sensitive or resistant.

Statistical Analysis
The incidence of infected quarters and the antibiotics susceptibility tests were calculated as a percentage of the total number of the examined quarters and strains of bacteria isolated, respectively.

Results

Isolation and Identification of Mastitis Causing Bacteria
Isolates from Mastitis Milk
The frequency of the isolation of mastitis causing bacteria (Table 1) showed that *S. aureus* (29 = 11.9%) were the most predominant pathogens identified, followed by *K. pneumoniae* (23 = 9.43%) and *E. coli* (17 = 6.7%). However, few isolates (2 = 0.82) of *Streptococcus agalactiae* were found in one cow. Other isolated organisms were *Bacillus cereus* (2 = 1.23%), *Enterococcus faecium* (6 = 2.46%), *Arcanobacterium pyogenes* (1=0.41%), *Pasteurella multocida*, *Pseudomonas aeruginosa* and *Aeromonas hydrophila* (2 = 0.82%). Moreover, high incidence (37 = 15.16%) of *Bacillus* spp. and few isolates of *Streptococcus* spp. (2 = 0.82%) and *Enterococcus* spp. (1 = 0.41%) were also found.
Table 1: Isolates from different sources of mastitic cows in dairy farms at Khartoum State

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Milk</th>
<th>Udder skin</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. cereus</td>
<td>3 (1.29%)</td>
<td>1 (0.95%)</td>
<td>0</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>2 (0.82%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td>6 (2.46%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>29 (11.9%)</td>
<td>1 (0.95%)</td>
<td>5 (2.7%)</td>
</tr>
<tr>
<td>Arcanobacterium pyogenes</td>
<td>1 (0.41%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>17 (6.7%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>23 (9.43%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. multocida</td>
<td>2 (0.82%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. aerogenosa</td>
<td>1 (0.41%)</td>
<td>10 (9.5%)</td>
<td>0</td>
</tr>
<tr>
<td>A. hydrophila</td>
<td>2 (0.82%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R. equi</td>
<td>0</td>
<td>1 (0.95%)</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus spp.</td>
<td>37 (15.1%)</td>
<td>14 (14.3%)</td>
<td>51 (27.4%)</td>
</tr>
<tr>
<td>Staphylococcus spp.</td>
<td>1 (0.41%)</td>
<td>0</td>
<td>2 (1.08%)</td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td>1 (0.41%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>0</td>
<td>3 (2.85%)</td>
<td>0</td>
</tr>
<tr>
<td>Alcaligenes</td>
<td>0</td>
<td>1 (0.95%)</td>
<td>0</td>
</tr>
<tr>
<td>Micrococcaceae</td>
<td>32 (13.11%)</td>
<td>0</td>
<td>27 (14.5%)</td>
</tr>
<tr>
<td>Esterobacteriaceae</td>
<td>18 (7.38%)</td>
<td>12 (11.4%)</td>
<td>7 (3.76%)</td>
</tr>
<tr>
<td>Coryneforms</td>
<td>49 (20.08%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gram-negative non lactose fermenters</td>
<td>16 (6.56%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non identified</td>
<td>3 (1.28%)</td>
<td>52 (254.74)</td>
<td>77 (42.31)</td>
</tr>
</tbody>
</table>

Similarly the present study estimated about 32 (13.11%) Micrococcaceae, 18 (7.38%) Enterobacteriaceae, 49 (20.08%) Coryneforms and 16 (6.56%) Gram-negative non-fermentors to occur in milk from infected cows.

Isolates from Udder Skin

Pseudomonas aeruginosa (10 = 9.5%) recorded the higher frequency of the isolated mastitis pathogens. One isolate could be identified for each of *S. aureus, Rhodococcus equi* and Alcaligenes (0.93%) and three isolates were *Proteus* spp. (2.85%). Although, Bacillus spp. showed the maximum rate of isolation from udder skin of the examined cows (15 = 14.25%), however only one isolate was identified as *B. cereus*. Moreover, the present study revealed high incidence of Enterobacteriaceae (12 = 11.4%) as shown in Table 1.

Isolates from Air of the Studied Farms

Five (2.7%) isolates of *S. aureus* were identified as pathogens from the air sedeminted samples of the fences. The optimum number of the isolated organisms from air was Bacillus spp. (51 = 27.42%) followed by Micrococcaceae (27 = 14.52%). Other isolates include *Streptococcus* spp. (2 = 1.08%) and Enterobacteriaceae (7 = 3.76%) as shown in Table 1.

Antibiotics Susceptibility Tests

Table 2 shows that *Staphylococcus aureus* has high resistant towards tetracycline (27 = 79.41%) compared to that towards penicillin (10 = 29.41%) and amoxicillin- clavulenic acid (7 = 20.59%), while susceptible to other tested antibiotics. *Escherichia coli* and *K. pneumoniae* isolated during the present study were 100% resistant to penicillin, oxacillin and lincomycin. Moreover, *E. coli* showed relatively high resistant towards erythromycin (13 = 76.47%), medium resistance to tetracycline (5 = 29.41%), streptomycin and sulfamethazol-trimethoprim (3 = 17.65%) and lower rate of resistant towards kanamycin.
Table 2: Antimicrobial resistant patterns of bacteria isolated from mastitis- infected cows

<table>
<thead>
<tr>
<th>Antibiotics (%)</th>
<th>S. aureus</th>
<th>Enterococcus faecium</th>
<th>E. coli</th>
<th>K. pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neomycin</td>
<td>0</td>
<td>6 (100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>35 (97.2)</td>
<td>6 (100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>0</td>
<td>6 (100)</td>
<td>17 (100)</td>
<td>23 (100)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0</td>
<td>0</td>
<td>13 (76.47)</td>
<td>23 (100)</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0</td>
<td>0</td>
<td>3 (17.65)</td>
<td>0</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>0</td>
<td>6 (100)</td>
<td>1 (5.88)</td>
<td>0</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>0</td>
<td>5 (83.33)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>0</td>
<td>6 (100)</td>
<td>17 (100)</td>
<td>23 (100)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>10 (29.4)</td>
<td>0</td>
<td>17 (100)</td>
<td>23 (100)</td>
</tr>
<tr>
<td>Amoxicillin-clavulenic acid%</td>
<td>7 (20.59)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfamethoxa-trimethoprim%</td>
<td>0</td>
<td>1 (16.66)</td>
<td>3 (17.65)</td>
<td>0</td>
</tr>
<tr>
<td>Tetracycline%</td>
<td>27 (79.41)</td>
<td>0</td>
<td>5 (29.41)</td>
<td>0</td>
</tr>
<tr>
<td>Doxycycline%</td>
<td>27 (79.41)</td>
<td>0</td>
<td>0</td>
<td>intermediate sensitivity</td>
</tr>
</tbody>
</table>

Table 3a: Mastitis incidence among infected cow’s quarters in dairy farms at Khartoum State

<table>
<thead>
<tr>
<th>Area</th>
<th>Clinical (watery)</th>
<th>Subclinical</th>
<th>Purulent</th>
<th>Haemorrhagic</th>
<th>Dry quarters</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omdurman</td>
<td>33</td>
<td>41</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>79</td>
</tr>
<tr>
<td>Khartoum</td>
<td>11</td>
<td>95</td>
<td>1</td>
<td>-</td>
<td>8</td>
<td>115</td>
</tr>
<tr>
<td>Khartoum North</td>
<td>26</td>
<td>47</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>183</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>274</td>
</tr>
</tbody>
</table>

Table 3b: Numbers of infected quarters in different dairy farms at Khartoum State

<table>
<thead>
<tr>
<th>Area</th>
<th>Right-fore</th>
<th>Left-fore</th>
<th>Right-hind</th>
<th>Left-hind</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omdurman</td>
<td>22</td>
<td>19</td>
<td>18</td>
<td>20</td>
<td>79</td>
</tr>
<tr>
<td>Khartoum</td>
<td>18</td>
<td>19</td>
<td>22</td>
<td>21</td>
<td>115</td>
</tr>
<tr>
<td>Khartoum North</td>
<td>27</td>
<td>31</td>
<td>27</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>69</td>
<td>67</td>
<td>71</td>
<td>274</td>
</tr>
</tbody>
</table>

(1 = 5.88%), while K. pneumoniae resisted erythromycin (100%). Enterococcus faecium showed 100% resistance for neomycin, nalidixic acid, oxacillin, kanamycin and lincomycin. Five isolates (83.33%) resisted gentamicin, while only one isolate (16.66%) resisted sulfamethoxa-trimethoprim.

Incidence of Mastitis

The distribution of the disease among the quarters was more or less similar (Table 3a). However, the incidences of subclinical mastitis were found to be higher compared to the clinical form of the disease (Table 3b). The higher incidences of subclinical mastitis were found to be in Khartoum (Friesian), which showed the lowest incidences of the clinical mastitis. Similarly, the higher numbers of the dry quarters, which was indication of previous infection and that the Friesian cows are of high risk to mastitis incidences than the local and cross dairy breeds.

Discussion

The higher rates of subclinical mastitis incidence, obtained during the present study (Table 3) were similar to the previous study carried by Mohamed et al. (1993). However, a considerable variation in the incidence of clinical mastitis among the studied farms was found. This could be due, as stated by Sargeant (1998) to the majority of the first cases of clinical mastitis occur early in lactation and the risk of clinical mastitis increases with increasing parity. They concluded that environmental contagious and minor pathogens were all associated with cases of clinical mastitis. The higher incidences of total and subclinical mastitis was found in Khartoum as shown in Table 3b.
The incidence of the infection distributed more or less evenly between the quarters (Table 3a). However, Fitzgerald et al. (1997) reported that intramammary infection and high somatic cell count (SCC) were found less often in front and left quarters than in rear and right quarters. It was indicated that clinical mastitis associated with dry period infections was more likely to occur earlier in lactation than clinical mastitis infections. There was evidence of quarter susceptibility to IMI or the possibility that infection with one organism led to clinical mastitis with another (Green et al., 2002).

The relatively high frequency of isolation of *S. aureus* during the present study was in accord with Kamata et al. (1990), Sergeant et al. (1998), Bezek (1998) and Sobiraj et al. (1997), as they have incriminated *S. aureus* as one of the most frequent causes of subclinical mastitis. Moreover, Fitzgerald et al. (1997) concluded that few specialized clones of *S. aureus* are responsible for the majority of the cases of bovine mastitis and that these colonies have abroad geographic distribution. However, staphylococcal poisoning, resulting from consumption of mastitis milk or milk extraneously contaminated, was frequently reported to occur in Sudan (Mustafa and Idris, 1975). The isolation frequency during this study was unlike that done by Rajala-Schultz et al. (2004). Since they reported that intramammary infection in the Krauss Dairy Research Herd at the Ohio Agricultural Research and Development Center were mostly caused by the coagulase-negative staphylococci (78%).

Our present data revealed a low frequency of the isolation of *Acroyobacterium pyogenes* and *Streptococcus agalactiae* (0.41 and 0.82%), respectively, which were in accord with Sobiraj et al. (1997) and Sergeant et al. (1998) who isolated low frequency of *A. pyogenes*. However, this is in contrast to the findings of Kamata et al. (1990) and Bezek (1998). Moreover, Myllys et al. (1994) reported that the incidence of *Streptococcus agalactiae* has decreased, while, the incidence of Staphylococci, has increased. This could be due to, as they mentioned that external pressure, like changes in animal husbandry, including antimicrobial treatments and introduction of modern milking machines, act as a selective forces on the bacterial species that causes bovine mastitis.

The higher frequency of the rate of isolating Enterobacteriaceae, *Bacillus* spp. and coliforms were also supported Kamata et al. (1990), Bartlet et al. (1992) and Sobiraj et al. (1997). Moreover, the isolated Micrococceae may inhibit the infection by major pathogens (Table 1). This might be due to the protective effect of Micrococceae against other major pathogens (Lam et al., 1997).

Pseudomonas aeruginosa (9.5%), *Proteus* spp. (2.8%), *Bacillus* (14.2%) and Enterobacteriaceae (11.4%) isolated from udder skin of the cows, as shown in Table 1 might be due to the presence of the mud all over the body of the cows. Since most of the samples were collected during full season. Similarly Murphy and Boor (2000) reviewed that teats and udders of cows inevitably become soiled when animals are held in muddy barnyards or when cows are lying in stalls. However, of the pathogenic bacteria, only one strain of *S. aureus* (0.95%) was identified. Similarly, the samples from air revealed only 3% *S. aureus* of the isolated strains. Further, Roberson et al. (1998), reported that the major source of *S. aureus* intramammary infection in heifers at parturition are milk and heifer body sites. They also reported that *S. aureus* from the environment was never the sole possible source for *S. aureus* from heifer colostrums. Moreover, Murphy and Boor (2000) stated that organisms commonly associated with environmental mastitis (e.g., *S. uberis* and *S. dysgalactiae*) are found in the cow’s environment and thus also may influence bulk milk bacterial counts through means other than mastitis infections.

Tetracycline showed the highest resistance percent to the tested isolates (Table 2). This was in accord to Mahn (1998) and Porretoen et al. (1998). However, it was in contrast to Vasil (1994), who demonstrated only 4.1-3.9% of *S. aureus* resistant to tetracycline. Further, similar to the present findings, they reported 33-20.3% penicillin resistant (Table 2.). Moreover, Adeyiyan, (1995)
reported 59 (23.6%) of *S. aureus* were found to be resistant to penicillin. The penicillin resistant could be attributed to milk fat globules (Ali-Vehmas et al., 1997) or because 40% of those bacteria were penicillinase-positive (Sobiraj et al., 1997). Hence in high SCC cows, it is important to select cows appropriate for treatment (as opposed to culling), and there is a good clinical justification for the use of antibiotics to treat existing IMIs. In low SCC cows, teat sealants provide a viable alternative to antibiotic DCT, and careful consideration should be given to their use (Bradley and Green 2004). However, *Staphylococcus aureus* isolated during the present study, were found to be sensitive to minocycline.

The Enterococci, isolated from mastitis cases showed a high resistant towards antibiotics tested (Table 2). This was similar to Lutfi et al., (1998) and Hryniewicz et al. (1998).

Most of the isolates tested, when conducting this study (Table 2) revealed high percentages of susceptibility to antibiotics. It is concluded that, in Sudan (Khartoum State) most of mastitis causing bacteria were highly susceptible to antimicrobial agents (with the exception of tetracycline and penicillin). This might be due to unavailability of some drugs. Moreover, the use of antibiotic therapy is not common among most of the dairy farms. Further, we could also concluded that although pathogenic *S. aureus* were isolated from the air of the farms and teat skin of the cows it was at non-significant rate and in most cases, were not the causative agents of the disease in the examined herds (data not shown). Similarly, their presence is of low frequency (3 and 0.95%, respectively). However this might still may create antibiotics resistant hazards to animals and human as stated by Marie et al. (1999) that resistant bacteria can be transferred to humans through the consumption of rare and raw beef and non pasteurized milk, thus rendering the resultant food-related infections difficult to treat.

The present study recommended that contamination at the site of production must be avoided because of its deleterious effects on the keeping quality of the milk and its suitability for further processing into products. Further epidemiological studies on the occurrence of mastitis and its associated predisposing and environmental factors are needed to adopt the suitable control measures. Antibiotic resistant is urgently need to be assessed in order to evaluate and minimize its health risk hazards.

Acknowledgements

The present study was conducted through German Academic Exchange Program. The laboratory facilities offered by Professor L.H. Wieler (Institute of Microbiology and Disease Diagnosis, Faculty of Veterinary Medicine, FU of Berlin, Germany) were also appreciated with sincere thanks. The authors would also like to thank all farmers who allowed and facilitate collection of data and samples for the present study.

References

