New Version of AES-ECC Encryption System Based on FPGA in WSNs

Bing Ji, Liejun Wang and Qinghua Yang
Information Science and Engineering, Xinjiang University, Urumqi, China

Corresponding Author: Liejun Wang, Information Science and Engineering, Xinjiang University, Urumqi, China

ABSTRACT
According to the threat of the data transmission on wireless sensor networks, a technique for speeding up point multiplication, an improved AES-ECC hybrid encryption system with cross encrypted keys for secure key exchange is presented. This scheme use AES algorithm to encrypt data, use ECC algorithm to encrypt private key K_{AES} and use SHA-1 algorithm and ECC algorithm to generate digital signature. With rapid advances in VLSI technology, a highly parallel FPGA design is used for their scheme, the computing efficiency of the algorithm is greatly improved. The AES encryption module and multi-scale multiplication algorithm is also optimized.

Key words: Wireless sensor networks, hybrid encryption, hardware implementation, point multiplication optimization

INTRODUCTION
Wireless Sensor Networks (WSN) are consisting of a large number of low-cost sensor devices which, actually, are used in a wide range of applications such as national defense, environmental monitoring and urban transport, etc. Due to their low-cost and small-size design, the sensor nodes are limited in terms of storage space, energy resources, communication bandwidth and every possible solution that aims to reducing the usage of these resources is then widely sought (Chen et al., 2009). Therefore, various types of security threats and challenges are to be faced. Key management is one of the most challenging security issues in large wireless sensor networks which are severely constrained in the resources such as processor, battery and memory, etc. Therefore, the energy-efficient security of WSN will be a crucial issue (Mpatziopoulos et al., 2009; Anastasi et al., 2009).

The existing symmetric encryption schemes, such as AES, provide a strong security solution (Hoang, 2012) but maintenance of keys is difficult. When asymmetric schemes could be used, maintenance of keys become easier but they provide a lesser degree of security when compared to symmetric encryption schemes. To cope with these shortcomings, the use of a new version of the hybrid encryption system is proposed which is a combination of Advanced Encryption Standard and Elliptical Curve Cryptography (Sutter et al., 2013) with cross encrypted keys for secure key exchange.

Further, in order to consider the suitability of a cipher for application to a wireless sensor node which is an energy constrained device, it is most critical to consider the cost of encryption in terms of energy consumption. An FPGA embedded processor system offers many exceptional advantages compared to typical microprocessors such as customization, obsolescence mitigation, component and
cost reduction and hardware acceleration (Garcia et al., 2009). Hence, we proposed the FPGA implementation of AES-ECC hybrid encryption system targeted to Wireless Sensor Networks (WSNs).

AES ENCRYPTION MODULE

AES encryption algorithm: AES Rijndael is a block cipher developed by NIST as the Advanced Encryption Standard (AES) replacing DES and published as FIPS 197 in November 2001 to address the threatened key size of Data Encryption Standard (DES). The AES algorithm has become a most popular algorithm of symmetric encryption algorithm, it has a very high security, so it can effectively defense various attacks or linear cryptanalysis (Tran et al., 2008). Before applying the algorithm to the data, the block and key sizes must be determined. AES allows for block sizes of 128, 168, 192, 224 and 256 bits. AES allows key sizes of 128, 192 and 256 bits. The standard encryption uses AES-128 where both the block and key size are 128 bits. AES has been designed following the wide trail strategy. In the strategy, the round transformation is divided into different components, each with its own functionality. The encryption algorithm is organized as a set of iterations called round transformations. All round transformations are identical, apart from the final one as shown in Fig. 1.

Optimal design of FPGA-based AES encryption module: The design of AES encryption module is implemented on a chip of FPGA. Round-key generation and round operation adopt the mode of parallel computation and it can support three kinds of key length such as 128, 192 and 256 bit. The proposed scheme has the following properties: A temporary storage is used for the round operation. The processor performs each round operation while the round-key of the next round is generated. So, round-Key requires no extra storage. In this way, it not only saves the on-chip resources but also solves the delay problem caused by reading the key and it improves the

![AES Encryption Diagram](image-url)

Fig. 1: AES encryption
clock frequency and the throughput of the system and reduced the memory requirements of the round key. Therefore, it enhances the security of wireless sensor network and service life of wireless sensor network nodes. The overall structure design as shown in Fig. 2.

AES encryption module consists of Data Input Register, Key expansion algorithm, Key buffer Register, Round encryption Unit, Master control Unit and Output Registers. Date_in is the data input signal, Date_ctrl is the data load signal, Key_in is the key input signal, Key_ctrl key-load signal, Ctrl1, Ctrl2, Ctrl3 is the control signal, Star is the key enable signal, Data_out is the data output signal and Done is completion signal.

ECC ENCRYPTION SYSTEM

ECC encryption algorithm theoretical model: According to the IEEE P1363 draft standard and the design of ECC basic encryption communication model (Sanjeev and Jose, 2010; Lin and Hsu, 2011), the user A select a specific elliptic curve is expressed as $E_a (a, b)$ and then select the point G on the curve; randomly generating private key k then, the public key is $Q = kG$. Q and G is a point on the elliptic curve as $E_a (a, b)$. Then, broadcast the characteristic information of elliptic curve parameters, Q and G. The plaintext which will be sent to A was encoded to a bit M of the curve by the user B then, generates a random number r. And generates $C1$, $C2$ at the same time then B sends them to A. According to its unique private key k, user A used it to decrypt the $C1$ and $C2$, then A get the plaintext M. In the process of communication, if the hacker H has monitored the five packets of information which were transmitted across the network, H was unable to get the private key k, thereby, was unable to get the plaintext M from $C1$ and $C2$ as shown in Fig. 3.

Classical algorithm of point multiplication operation: For elliptic curve cryptography, point multiplication KP of the group operation layer is the most time-consuming operation, is also the most frequently invoked operation. It plays a decisive role in the efficiency of the system (Elbirt et al., 2001). The binary algorithm is the basic algorithm of KP. K is generally used for binary representation as follows:

$$K = \sum_{i=1}^{n} 2^{i}a_i = a_1 + 2a_2 + \cdots + 2^{i-1}a_{i-1} + 2^n a_n$$

(1)
With this representation, \(a_i \in \{0, 1\} \), the calculation of public key \(Q \) equation can be expressed as:

\[
Q = kP = \left(\sum_{i=0}^{n} 2^i a_i \right) \cdot P = 2^{[\log_G 2]} \cdot P + 2^{[\log_G 3]} \cdot P + \ldots + 2^{[\log_G n]} \cdot P + a_i P
\]

(2)

According to Eq. 2, with the iterative algorithm, it actually needs \(N \) times point doubling operation and \(M-1 \) times point addition operation (Jarvinen and Skyttä, 2009). \(M \) is the number of 1's in sequences \(a \). Using the 100 bit (large integer multiplication) as an example, the classical point multiplication algorithm needs 100 times point doubling operation and 49.5 (average) times point addition operation.

Improved algorithm of point multiplication operation: In this study, the fast algorithm performs the following steps:

Step 1: \(K \) can be conveniently expressed in the following binary form:

\[
K = (a_0, a_1, \ldots, a_i, a_j)
\]

For example, 100 can be expressed as 1100100. With this representation, \(a_i \in \{0, 1\}, i > 1, i = [\log_2 100] + 1 \)

Step 2: Remove the top bit \(a_i \) of \((a_0, a_1, \ldots, a_i, a_j) \), then develop into \((a_{i-1}, a_j, a_{i-2}, a_j, \ldots, a_j) \)

Step 3: Then perform this operation:

Algorithm 1: KP algorithm

Input: \(k \) (in its binary form), \(P \)
Output: \(Q = kP \)

1. \(n = i-1 \)
2. While \((n>1) \) do
 2.1 If \(a_n = 1 \), then \(Q \leftarrow 2P + P \); else \(Q \leftarrow 2P \)
 2.2 \(n \leftarrow n-1. \)
 2.3 \(p \leftarrow Q \).
3. Return \(Q \)
Verify this algorithm as follows:

For example, \(K = 30 = 11110 \). According to the classical algorithm, the number of point additions required is 30. According to this algorithm, the number of point additions required is only 11, if \(i = n \), the number of point additions required is on average \(5/3 \lceil \log_5^i \rceil \leq n \) and the number of point additions required is on maximum \(2 \lceil \log_2^i \rceil \). As compared with classical scheme, the proposed algorithm has efficiency advantages.

AES-ECC HYBRID ENCRYPTION MODEL IMPLEMENTATION

ECC signature and verification process: Using the Hash function (De Canniere and Rechberger, 2006) which was selected to process messages first, Signature Scheme Based on Elliptic Curve follows: The signer A has a private key \(d \) and a public key \(Q \), making known to the public the public key \(Q \), the selected Hash and other necessary information; A will send B signature-messages, B can verify the legitimacy of signatures based on public news, \(n \) is the order of point \(G \). The signature generation process is as shown in Fig. 4.

To sign a message \(m \), the sender performs the following steps:

Step 1: \(k \in [1, n-1] \), \(u = [k]G = (x_u, y_u) \); \(K \) is a random selection
Step 2: Compute \(r = x_v \mod n \), if \(r = 0 \), return to step 1
Step 3: According \(sk = \text{sha}-1(m)+dr \mod n \), we would calculate \(s \). If \(s = 0 \), return to step 1
Step 4: \((u, s)\) is the signature information, then, we sent \(m \) and \((u, s)\) to B as \((m(u, s))\)

To verify the signature, the receiver performs the following steps:

Step 1: If \(s \notin [1, n-1] \), the signature is forged, reject the signature
Step 2: Verify the equation:

\[
[s]u = [\text{sha}-1(m)]G+[r]Q
\]

Validation passes if and only if equality holds, otherwise, the signature is forged, reject the signature proving the equation:

- Because \(s = k^{-1}(\text{sha}-1(m)+dr) \) and \(u = [k]G \)
- Compute \([s]u = [k^{-1}(\text{sha}-1(m)+dr)k]G\)

\[
= [\text{sha}-1(m)]G+[dr]G
\]

![Diagram](image.png)

Fig. 4: Digital signature software process
Overall program module: The existing framework of the hybrid encryption scheme allows for only one way key encapsulation. That is, the AES key is protected by encrypting it with the ECC key. This necessitates periodic updation of AES key and ECC public key without increase in complexity and also cross encryption of AES and ECC keys with one another. The improved AES-ECC Hybrid encryption scheme is shown in Fig. 5.

The steps involved in the improved AES-ECC Hybrid encryption scheme is as follows:

Step 1: Data is collected by the sensor data acquisition system

Step 2: Using SHA-1 function to generate the data summary

Step 3: Using the sender's private key K and ECC digital signature module to generate Digital Signatures

Step 4: According to AES encryption module (the private key is KAES), encrypting digital signature and encrypting data which need to be sent. Then, getting data-ciphertext and signature-ciphertext

Step 5: Encrypting the private key KAES by ECC encryption module, then, generating key-ciphertext

Step 6: Packing all ciphertext and sending it by means of wireless sensor networks

Step 7: The sender upload that ciphertext to the internet by the sink node, the users can use the mobile terminal to receive data

Step 8: When the receiver receives the ciphertext, receiver uses his private key to decrypt the key KAES, then, decrypting the data-ciphertext and signature-ciphertext by KAES. Using the

Fig. 5: AES-ECC hybrid encryption system
sender's public key to verify the signature and get the summary B; then we can get the summary A by using SHA-1 algorithm. Comparing summary A with summary B, if they are the same, then the data is valid and available; otherwise, it represents invalid data.

RESULTS AND DISCUSSION

Verilog hardware description language is used for hierarchical top-down programming. Altera's development tools QUARTUS II 9.0 are used for compiler and simulation. Finally, this scheme is implemented on the EP4CE115 chip of Cyclone IV series. Cyclone IV series (the development of power is less than 1.5 watts) provides nearly 150000 logic units and 8 integrated 3.125 Gbps transceivers. It is ideally suited for wireless sensor networks in the field of low-cost, small form factor packaging applications (Fig. 6).

Comparing this study with the similar schemes, as shown in Table 1, the results show that maximum frequency can reach 60 MHz of encryption and throughput is 985 Mbps. It uses only 846 (LE) and resource consumption rate is only 0.0066% (Fig. 7).

For ease of presentation, the improved ECC modules is compared with the similar functions of the software, as shown in Table 2.

The improved ECC and TinyECC (Liu and Ning, 2008) are written into two nodes (FPGA) with the same performance. And the code is based on 160 bit standard elliptic curve parameters secp160r1 (SECG established). Computing the same operation 100 times, then taking the average as shown in Table 2.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Operation mode</th>
<th>Frequency (MHz)</th>
<th>Throughput (Mbps)</th>
<th>LE</th>
<th>Key length (bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>ECB</td>
<td>60.0</td>
<td>985</td>
<td>846</td>
<td>128</td>
</tr>
<tr>
<td>Wang (2008)</td>
<td>ECB</td>
<td>29.4</td>
<td>376</td>
<td>3235</td>
<td>128</td>
</tr>
<tr>
<td>Shen (2006)</td>
<td>ECB</td>
<td>67.0</td>
<td>779</td>
<td>881</td>
<td>128</td>
</tr>
<tr>
<td>Ellbirt et al. (2001)</td>
<td>ECB</td>
<td>40.0</td>
<td>487</td>
<td>857</td>
<td>128</td>
</tr>
</tbody>
</table>

Table 2: Experimental results compare

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Execution time (sec)</th>
<th>Execution time (sec)</th>
<th>Fixed point scalar multiplication (sec)</th>
<th>RAMB (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>2.38</td>
<td>3.21</td>
<td>1.74</td>
<td>2.1</td>
</tr>
<tr>
<td>Tinyecc (Liu and Ning, 2008)</td>
<td>7.71</td>
<td>14.82</td>
<td>7.32</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Fig. 6: AES STRUCT DE
Fixed point scalar multiplication: The improved ECC algorithm improves nearly 3.5 times faster, results show that it is different with that mentioned above. Because the optimization mechanism of sliding window and optimization of pre computed are added to the classical algorithm, it improved the operation effect of certain.

Digital signature verification: It is a collectivity of a fixed bit multiplication (U,P) and a random point multiplication (U,Q). For the random point multiplication, it is unable to calculate the budget table by using pre. Thus, effect cannot be improved significantly.

RAM of code: The improved code occupies RAM space slightly larger than Tinyecc, this is because the code is needed to open up a static memory space in memory and the static memory is used to place the budget table. However, 0.4 k RAM space has exchanged a significant speed boost, it shows that the improved algorithm has higher application value.

CONCLUSION

According to the characteristics of the wireless sensor network, an improved AES-ECC hybrid encryption system is proposed. This design has good flexibility and versatility. And we optimized the design of ECC multiplying unit. It improved the speed of the digital signature generation and authentication. Fully meeting the requirements of wireless sensor networks for the stability, power consumption and processing speed. Currently, working is done on high performance (increase throughput, reduce logic unit occupancy) AES encryption module and optimization problems of random point multiplication of ECC cryptographic module.

As compared with several schemes (Tang and Wang, 2013; Rafik and Mohammed, 2013; Zhang, 2007), the proposed scheme has the following properties (1) It provide better security requirements with relatively low-resource request, (2) It is simple to execute the key management, (3) It is secure against some potential attacks and (4) It is fast and easy to generate digital signatures and verify the digital signatures.

ACKNOWLEDGMENT

This study is supported by the Natural Science Foundation of XJ autonomous region under grant No. 2013211A012. The authors would like to thank the anonymous reviewers for their constructive comments that helped to improve the quality of this study.
REFERENCES

