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ABSTRACT
Soil microbial assortment is affected by hydrocarbon perturbation, thus selective enrichment

of hydrocarbon degraders occurs. Hydrocarbons interact with the terrestrial ecosystem and soil
microorganisms shaping the fate of the contaminants relative to their chemical nature and
microbial degradative capabilities, respectively. Microbial methods for monitoring bioremediation
of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure
rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe
and acceptable level. While it is broadly accepted that bacteria and fungi are chief mediators in
hydrocarbon degradation, bacteria have been revealed to be more versatile than fungi and therefore
may play a greater role during biodegradation of hydrocarbons. Biodegradation via algae, yeast and
protozoans are also found important in degrading wide range of these petroleum hydrocarbons.
Microbial degradation by Arthrobacter, Mycobacterium, Pseudomonas, Rhodococcus, Aspergillus,
Penicillium, Chlorella, Cyanobacteria and Candida can be considered as a key component in the
cleanup strategy for hydrocarbon remediation. This brief review will inspect hydrocarbon
degradation by microorganisms under different ecosystems.
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INTRODUCTION
Pollution of the biosphere has increased strongly since the commencement of the industrial

revolution. Petroleum industry has played an imperative role in the world economy and society but
it has also caused quite a lot of negative environmental impacts around the world. The modern
petroleum industry had its beginning in Romania and oil was also recovered from a well, sunk in
Pennsylvania by Colonel Drake in 1859 (Alloway and Ayres, 1993). Quantitatively, the organic
pollutants are mainly made up of hydrocarbons in their various forms. In broad-spectrum,
hydrocarbons are classified into aliphatic (mainly n-alkane), aromatics as well as monoaromatics
such as BTEX (benzene, toluene, ethylbenzene and xylenes) and polycyclic aromatics (i.e. PAH i.e.,
polycyclic aromatic hydrocarbons) and asphaltics (Atlas, 1981). The toxicity of petroleum
hydrocarbons depend on the solubility and the bioavailability of the hydrocarbons. In the past, it
was implicit that the water soluble fractions of the aromatics and polyaromatics were the most
harmful and consequently these compounds were the molecules for considering in toxicological
studies. They are assumed to be mutagenic, teratogenic and carcinogenic (Keith and Telliard,
1979). More than ever the polyaromatic hydrocarbons with 4 or 5 rings are known carcinogens
(Cerniglia, 1992). The non aromatic substances in the petroleum were not considered very harmful
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and alkanes and cycloalkanes are now also taken into account (Peterson, 1994). Hydrophobic
hydrocarbons are toxic for microorganisms by accumulation in the membrane, which causes the loss
of membrane integrity (Sikkema et al., 1995).

Biodegradation is an important process in petroleum toxicology because it changes both the
nature and concentration of the chemical compounds. It is one of the forms of bioremediation to
treat soils, water or sediments contaminated with PAHs. Microorganisms involved for
biodegradation should be indigenous to the contaminated area or site (Das and Chandran, 2011).
Diverse range of microorganisms has the ability to clean up the hydrocarbon contaminated sites
(Atlas, 1978). Microbes convert the chemical compounds into energy, cell mass and biological waste
products (Rahman et al., 2002). Hydrocarbons degrading microorganisms are extensively
distributed in soil habitats. Many researchers are of the opinion  that  certain  bacteria  isolates
are  capable  of  degrading  PAHs  of particular note. Escherichia coli, Alcaligenes sp. and
Thiobacter subterraneus were efficient isolates for degrading anthracene and phenanthrene. Some
microorganisms mainly from the genera Pseudomonas and Mycobacterium have been found capable
of transforming and degrading PAHs under aerobic conditions (Mrozik et al., 2003). It is also
evident that anthracene could be completely mineralized by Sphingomonas, Nocardia, Beijerinckia,
Paracoccus and Rhodococcus with dihydriol as the initial oxygenated intermediate (Teng et al.,
2010). Evidence have been accumulating to propose  that  certain  microorganisms  namely;
Bacillus subtilis, Pseudomonas aeruginosa and Torulopsis bombicola could generate bioremediation
surfactants such as surfactin, rhamolipid and sophorolipid capable of improving bioremediation by
solubilizing PAHs into the aqueous medium which enhance their bioavailability for degradation
(Cottin and Merlin, 2007).

In the identical way, hydrocarbons degrading cyanobacteria, molds and yeasts have been
reported to be wide spread in many habitats and also implicated in hydrocarbon degradation
(Chaillan et al., 2004). The present review emphasizes an outline of the current knowledge of
microbial PAH catabolism and the mechanism involved in PAHs degradation by different
microorganisms.

Polycyclic aromatic hydrocarbons: Polyaromatic hydrocarbons (PAHs) are environmental
pollutants in the soil, water and air. They and their derivatives are prevalent products of
incomplete combustion of organic materials and from anthropogenic activities (Mrozik et al., 2003;
Lundstedt, 2003). These compounds are a class of harmful organic chemicals consisting of two or
more fused benzene rings in linear, angular and cluster arrangements (Juckpech et al., 2012). For
example, naphthalene is the simplest with two rings and is the  most  soluble  of  the  PAHs
(Mrozik et al., 2003). On the other hand, benzo[a]pyrene, a typical high molecular weight PAHs
with five rings, is one of the most recalcitrant and toxic PAHs (Li et al., 2010). The chemical
properties of individual PAHs are reliant in part upon molecular size (that is their no. of aromatic
rings) as well as their molecular topology (that is their pattern of aromatic linkage). An increase
in size and angularity of PAH molecular commonly results in an allied increase in their
hydrophobicity and electrochemical stability which contributes to its persistence (Loick et al., 2009).
Polycyclic aromatic hydrocarbon are comparatively neutral to stable with moderately low solubility
in water but are extremely lipophilic, where most of them have low vapour pressure. In fact, PAHs
are known to exhibit essentially toxic effects and classified as priority pollutants by the US
Environmental Protection Agency (USEPA). Due to diverse ranges of the number of carbon atoms,
petroleum products have different physicochemical properties which make them differ in their
behavior in the environment. Table 1 shows the 17 PAHs priority pollutants according to USEPA.
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Table 1: Physical and chemical properties of PAHs arranged on the basis of their toxicities
Chemical Chemical Molecular Melting Boiling Density Solubility

PAHs formula structure weight (g molG1) point (°C) point (°C) (g cmG3) in water
Acenaphthalene C12H10 154.21 95 96.2 1.222 0.4 mg/100 mL

Acenaphthylene C12H8 152.20 92-93 265-275 0.8987 Insoluble

Anthracene C14H10 178.23 218 340 1.25 Insoluble

Benzo(a)anthracene C18H12 228.2879 158 438 1.19 0.010 mg LG1

Benzo(a)pyrene C20H12 252.31 179 495 1.24 0.2-6.2 μg LG1

Benzo(e)pyrene C20H12 252.31 178-179 310-312 1.286 6.3×10G3 mg LG1

Benzo(b)fluoranthene C20H12 252.3093 168 - 1.286 0.0012 mg LG1

Benzo(ghi)perylene C22H12 276.3307 278 500 1.378 2.6×10G4 mg LG1

Benzo(j)fluoranthene C20H12 252.3093 165 - 1.286 6.76×10G3 mg LG1

Benzo(k)fluoranthene C20H12 252.31 217 - 1.286 -

Chrysene C18H12 228.28 254 448 1.274 Insoluble

Dibenz(ah)anthracene C22H14 278.3466 262 - 1.232 5×10G4 mg LG1

Fluoranthene C16H10 202.26 110.8 375 1.252 265 μg LG1

Fluorene C13H10 166.223 116-117 295 1.202 1.992 mg LG1

Indeno (1,2,3-cd) pyrene C22H12 276.3 163.6 530 0.062 mg LG1

Phenanthrene C14H10 178.23 101 332 1.18 1.6 mg LG1

1

2

3456

7

8

9 10

Pyrene C16H10 202.25 145-148 404 1.271 0.135 mg LG1
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Microorganisms involved in petroleum hydrocarbon degradation
Bacterial degradation: Biodegradation of hydrocarbons can be accomplished by various
microorganisms. Several bacteria are able to degrade PAHs as their sole carbon source. The
common biochemical pathways for the bacterial degradation of PAHs such as naphthalene,
phenanthrene, anthracene and acenaphthene have been well investigated. Biodegradation
mechanisms require the presence of molecular oxygen to initiate the enzymatic attack of PAH
rings. In the initial step, Dioxygenase (Aromatic) and Monooxygenase (Aliphatic) catalyzed
oxidation reactions. Dioxygenase enzyme breaks the benzene ring and formed cis-dihydrodiols as
early byproduct. It is a multi component enzyme system which involved many coenzyme and metal
ions (as a co factor) (Peng et al., 2008). Table 2 summarizes the bacterial sp. involved in
biodegradation.

Majority of hydrocarbons utilizing bacteria metabolize either aliphatic or aromatic
hydrocarbons. These bacteria are able to adapt too many different hydrocarbons as their energy
source. The most simplest and soluble PAH is Naphthalene and microorganisms which are able to
utilize Naphthalene are relatively easy to isolate (Mrozik et al., 2003). Davies and Evans (1964)
were investigated the biochemical sequence and enzymatic reactions leading to the degradation of
naphthalene. General naphthalene-degrading bacteria include Pseudomonas sp., Vibrio sp.,
Mycobacterium sp., Marinobacter sp., Sphingomonas  sp.,  Rhodococcus  sp.,  Micrococcus  sp
(Pawar et al., 2013). These metabolize aromatic substrates by first oxygenating the aromatic ring
to form a diol (two alcohol groups). This mechanism (Fig. 1) involved multicomponent enzyme
system (naphthalene dioxygenase) which attacks on the aromatic ring to form cis-(1R, 2S)-
dihydroxy-1,2-dihydronaphthalene  (cis-naphthalene  dihydrodiol)  (Kiyohara  et  al., 1994). The
cis-naphthalene dihydrodiol is subsequently dehydrogenated to  1,2-dihydroxynaphthalene  by a
cis-dihydrodiol dehydrogenase  (Goyal  and  Zylstra,  1997).  It  ultimately,  metabolized to
salicylate  via  2-hydroxy-2H-chromene-2-carboxylic   acid,   cis-o-hydroxybenzal   pyruvate   and
2-hydroxy-benzaldehyde (Kiyohara et al., 1994). Furthermore, 1,2-dihydroxynaphthalene is non
enzymatically oxidized to 1,2-naphthaquinone (Auger et al., 1995). Salicylate is typically
decarboxylated to catechol, which is  further  metabolized  by  ring  fission  in  meta  and  ortho 
pathways. Fuenmayor et al. (1998),  reported  that salicylate  is  further  converted  to  gentisate 
by salicylate-5-hydroxylase.

Recently, Amenu (2014), identified that Naphthalene degrader Pseudomonas sp. S3 and F3 at
optimum pH and temperature 7 and 37ºC respectively. After 7 days of incubation biodegradation
efficiency for F3 was 61.11% of naphthalene. Several studies have designated that genes which
encode for naphthalene oxidation in Pseudomonas are found on plasmids (Mrozik et al., 2003).
There are three identified plasmids that determine the  degradation  of  naphthalene:  NAH7,
NPL1 and  pND  but  the  plasmid  which  has  been   considered  most  intensively  is  NAH7  in

Table 2: Bacterial sp. which is involved in Biodegradation (Bamforth and Singleton, 2005)
Compounds Microorganisms
Alkanes Pseudomonas sp., Bacillus sp., Acinetobacter calcoaceticus and Micrococcus sp.,

Candida Antarctica, Nocardia erythroplis, Ochrobactrum sp. and Acinetobacter sp.,
Serratia marcescens, Candida tropicalis, Alcaligene sodorans, Arthrobacter sp. and Rhodococcus sp.

Mono-aromatic hydrocarbons Brevibacillus sp., Pseudomonas sp., Bacillus sp., B. stereothermophilus and Vibrio sp.,
Corynebacterium sp., Ochrobactrum sp. and Achromobacter sp.

Poly-aromatic hydrocarbons Alcaligenes odorans, Sphingomonas paucimobilis, Achromobacter sp. and Mycobacterium sp.,
Pseudomonas sp., Mycobacterium flavescens, Rhodococcus sp., Arthrobacter sp. and Bacillus sp.,
Burkholderia cepacia, Xanthomonas sp. and Alcaligenes

Resins Pseudomonas sp., Members of Vibrionaceae, Enterobacteriaceea and Moraxella sp.
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Fig. 1: Multicomponent  enzyme  system  metabolizes  naphthalene  by  Pseudomonas sp.
(Kiyohara et al., 1994)

Pseudomonas putida (Malatova, 2005). Pawar et al. (2013), suggested that PAH-degradative gene
in majority of PAH degrading bacteria were highly homologous to the naphthalene gene (nah gene)
present in NAH7 plasmid of Pseudomonas putida strain G. Pseudomonas is well known degrader
of three and four ring PAHs (Bamforth and Singleton, 2005). For example, phenanthrene was
degraded by Pseudomonas sp. strain PP2 via a dioxygenase initiated and it converted into the
naphthalene degradation pathway (Parales and Haddock, 2004). Phenanthrene has bay and K
regions able to form an epoxide, which is suspected to be an ultimate carcinogen (Bamforth and
Singleton, 2005). For above reason, it is used as a model substrate to study the catabolic pathway
of bay and K-region containing carcinogenic such as benzo[a]pyrene, benzo[a]anthracene and
chrysene (Bamforth and Singleton, 2005). In general,  bacterial degradation   of   phenanthrene
(Fig. 2) is initiated by 3,4-dioxygenation to yield cis-3,4-dihydroxy-3,4-dihydrophenanthrene, which
undergoes enzymatic dehydrogenation to 3,4-dihydroxyphenanthrene (Seo et al., 2007). The cleaved
product is metabolized into 1-hydroxy-2-naphthoic acid, 1,2-dihydroxynaphthalene and finally into
salicylic acid (Mrozik et al., 2003). However, salicylic acid can also be converted into catechol
(Samanta et al., 1999). They investigate the degradation of phenanthrene by Brevibacterium sp.
HL4 and Pseudomonas sp. DLC-P11and observed 1napthol intermediate during its degradation.
Brevibacterium sp. HL4 degraded phenanthrene via 1-hydroxy-2-naphthoic acid, 1-naphthol and
salicylic  acid, whereas Pseudomonas sp. DLC-P11 degraded phenanthrene via the  formation  of
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Fig. 2: Degradation of phenanthrene in catechol and protochatechic acid by Brevibacterium sp. and
Pseudomonas sp. (Mrozik et al., 2003)

1-hydroxy-2-naphthoic acid, 1-naphthol and o-phthalic acid (Samanta et al., 1999). Phenanthrene
degradation was also observed by Deveryshetty and Phale (2009), they found phenanthrene
degradation by Pseudomonas sp. strain PPD via the ‘Phthalic acid’ route. The key enzyme of
mechanism  is  1-hydroxy-2-naphthoic  acid  dioxygenase  (HNDO).  These  results  suggest  that
1-HNDO of Pseudomonas sp. strain PPD has an extradiol-type ring-cleaving dioxygenase system.

Apart from Pseudomonas strains, various microorganisms Mycobacterium, Rhodococcus and
Nocardia  also  metabolizes  several  PAHs. Mycobacterium  involved  both  monooxygenation and
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dioxygenation  with  the formation of both  cis and trans-1,2-dihydrodiols in the ratio of 25:1
(Mrozik et al., 2003). The reaction is catalyzed by cytochrome P450 monooxygenase which forms
naphthalene 1,2-oxide. Afterwards it converted to the trans-diol by an epoxide hydrolase enzyme
(Mrozik et al., 2003).  Mycobacterium  sp.  also  involved  in  phenanthrene  degradation  at
different sites of the molecule, apparently via both dioxygenase  and  monooxygenase  attack  on
the  aromatic  nucleus.  The  resulting  anthracene   cis-1,2-dihydrodiol   is   dehydrogenated   to
1,2-dihydroxyanthracene (Moody et al., 2001). According to Heitkamp et al. (1988), Majority of
Mycobacterium sp. are also known for the degradation of pyrene and benzo(a)pyrene.
Mycobacterium sp. also mineralized pyrene which involves ring oxidation and ring fission.
Formation of cis-4,5-pyrenedihydrodiol and trans-4,5-pyrenedihydrodiol and pyrenol are the
product of ring oxidation and 4-hydroxyperinaphthenone, 4-phenontheroic acid, phthalic acid and
cinnamic acid are product of ring fission. Presence of 4 cis- and trans -4,5-dihydrodiols suggest
multiple pathways for the initial oxidative attack of pyrene resulted in the formation of mentioned
diols at 4,5 positions (k region).

Vila et al. (2001) reported that Mycobacterium sp. strain AP1 is capable to form a novel
metabolite known 6,6-dihydroxy-2-2-biphenyl dicarboxylic acid, which demonstrates a new
metabolic pathway and involves the cleavage of both central rings of pyrene. The schematic
pathway  proposed  for  the  degradation of pyrene by Mycobacterium sp. strain AP1 is shown in
Fig. 3.

Fungal degradation: Several fungi have an ability to degrade persistent pollutants (Haritash and
Kaushik, 2009). Spellman (2008), reported that it (like bacteria) can metabolize dissolved organic
matter as they are chief organisms responsible for the decomposition of carbon in the biosphere.
Similarly, Matavulj and Molitoris (2009) concluded that fungi are equipped with extracellular multi
enzyme complexes, which involves breakdown of natural polymeric compounds by means of their
hyphal systems. Hyphal system is able to colonize and penetrate substrates rapidly and to
transport and redistribute nutrients within their mycelium.

Fungal degradation of PAHs, can be carried out by two groups of fungi, non ligninolytic and
ligninolytic fungi (Bamforth and Singleton, 2005). Chrysosporium pannorum, Cunninghamella
elegans and Aspergillus niger are non-ligninolytic fungi which involved cytochrome P450
monooxygenase enzyme-mediated oxidative pathway for PAH degradation (Sutherland et al., 1995).
Pleurotus ostreatus and Antrodia vaillantii are White rot fungi which produces ligninolytic enzymes
and involved in oxidation of lignin present in wood and other organic matter (Bamforth and
Singleton, 2005). Lignolytic enzymes system consist of Lignin Peroxidases (LP), Manganese
dependent peroxidases (MnP) and laccases (Haritash and Kaushik, 2009).

Hadibarata et al. (2013) investigated degradation of naphthalene by  a  white  rot  fungus
Pleurotus eryngii. It cleaved C1 and C4 position of naphthalene to give 1,4-Naphthaquinone by
dioxygenation mechanism. 1,4-Naphthaquinone convert into benzoic acid and finally converted into
Catechol by the combination of decarboxylation and hydroxylation process.

Degradation of phenanthrene involves cytochrome P450 mediated oxidation and later it will
mediated by lignin peroxidases enzymes (Bezalel et al., 1997) (Fig. 4).

Leitao (2009) reported metabolism of pyrene by Penicillium janthinellum SFU 403, a strain
isolated from petroleum-contaminated soils. The first step of degradation involves formation of
monophenols, diphenols, dihydrodiols and quinones. It degrade Pyrene (Fig. 5) via hydroxylation
to 1-pyrenol hydroxylate to form 1-pyrenol, followed by 1,6 and 1,8-pyrenequinones (Wang and
Zhao, 2007).
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Fig. 3: Schematic pathway proposed for the degradation of pyrene in phthalic acid and
phenanthrene 4-carboxy by Mycobacterium sp. AP1 (Mrozik et al., 2003)

Clemente et al. (2001) investigated degradation of PAH by thirteen deuteromycete ligninolytic
fungal strains and identified the degree of degradation depends on activity of lignolytic enzymes.
Maximum degradation of naphthalene (69%) was observed by the strain 984 having Mn-peroxidase
activity, followed by strain 870 (17%) showing lignin peroxidase and laccase activities.
Phenanthrene degradation of 12% was observed with strain 870 with Mn-peroxidase and laccase
activities. A good level of degradation of anthracene (65%) was found by the strain 710. Ali et al.
(2012) identified Aspergillus terreus as superior for ligninolytic enzyme production. For maximum
production of lignin peroxidase and manganese peroxidases optimum temperatures are 33.6 and
33.1°C and pH are 4.1 and 5.8, respectively. Using optimum condition it was able to degrade 98.5%
of naphthalene and 91% of anthracene in soil models.

Algal degradation: Several research has confirmed the involvement of  fresh  algae (e.g.,
Chlorella vulgaris, Scenedesmus platydiscus, S. quadricauda and S. capricornutum) in degradation
of PAHs (Wang and Zhao, 2007). Prokaryotic and eukaryotic photoautotrophic marine algae (i.e., 
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Fig. 5: Metabolism of Pyrene into 1,8-pyrenequinone by P. janthinellum SFU403 (Leitao, 2009;
Launen et al., 1999)

Cyanobacteria, Green algae and Diatoms) are well known to metabolize naphthalene by a series
of metabolites (Haritash and Kaushik, 2009). Cerniglia et al. (1980), investigated the role of
Cyanobacteria (blue-green algae) in naphthalene degradation. It produces four major metabolites,
1-naphthol, 4-hydroxy-4 tetralone, cis naphthalene dihydrodiol and trans-naphthalene dihydrodiol
at concentrations which were non toxic (Fig. 6).

The potential of algal-bacterial microcosms of Pseudomonas migulae and Sphingomonas
yanoikuyae were studied for phenanthrene degradation (Haritash and Kaushik, 2009).
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Ueno et al. (2008) studied the degradation of fluoranthene, pyrene and a mixture of
fluoranthene and pyrene by Chlorella vulgaris, Scenedesmus platydiscus, Scenedesmus
quadricauda and Selenastrum capricornutum. The PAHs removal in 7 days of treatment was 78
and 48%, respectively by S. capricornutum and C. vulgaris.

Yeast degradation: Several yeasts may utilize aromatic compounds as growth substrates but
more significant is their ability to convert aromatic substances cometabolically. Some species such
as the soil yeast Trichosporon cutaneum possess specific energy dependent uptake systems for
aromatic substrates (e.g., for phenol) (Mortberg and Neujahr, 1985). According to Miranda et al.
(2007), Yeasts are also able to utilize aliphatic hydrocarbons occurring in crude oil and petroleum
products   and  typical  representatives  of  alkane-utilizing  yeasts  include  Candida  lipolytica,
C. tropicalis, Rhodoturularubra aurantiaca and Aureobasidion (Trichosporon) pullulans.
Rhodotorula aurantiaca and C. ernobii were found able to degrade diesel oil. Leelaruji et al. (2013)
reported Aureobasidium pollulans and var. melanogenum are lipolytic yeast have subsequent
ability to degrade naphthalene (24.4%), anthracene (37.3%), pyrene (27.3%) and benzo(a)pyrene
(45.95%) via laccase production. Hesham et al. (2006) identified yeast strain AEH capable of
degrading naphthalene (5.36 mg LG1), phenanthrene (5.04 mg LG1) and chrysene (1.54 mg LG1)
within 2, 10, 10 days, respectively. In combinations, yeast strain AEH degrades, naphthalene and
phenanthrene (3.79 and, 4.20 mg LG1 within 10 days, respectively) and chrysene and
benzo(a)pyrene (3.37 and 1.91 mg LG1 within 10 days, respectively). In a binary system, all of the
other 3 PAHs could be utilized as the carbon source for the cometabolic degradation of
benzo(a)pyrene with naphthalene as the best one.
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Yeasts are also known for playing a significant role in the removal of toxic heavy metals via
biosorbtion method. Wang and Chen (2006) demonstrated that yeasts are capable of accumulating
heavy metals such as Cu(II), Ni(II), Co(II), Cd(II) and Mg(II) and are superior metal accumulators
compared to certain bacteria. Pichia anomala  is  able  to  remove  Cr(VI)  (Bahafid  et al., 2011)
and  the  biosorption  of Cr(VI) is occurs by live and dead cells of three yeasts species:
Cyberlindnera fabianii, Wickerhamomyces anomalus and C. tropicalis (Bahafid et al., 2013).
Several yeast strains S. cerevisiae, P. guilliermondii, Rhodotorula pilimanae, Yarrowiali polytica
and Hansenula polymorpha have been reported to reduce Cr(VI) to Cr(III) (Ksheminska et al.,
2006). In addition, the tolerance of P. guilliermondii to chromate was found to depend on its
capacity for extracellular reduction of Cr(VI) and Cr(III) chelation (Ksheminska et al., 2008). Most
studies, have reported the efficiency of immobilized cells of yeasts in metals removal, one example
is Schizosaccharomyces pombe for copper removal (Subhashini et al., 2011).

Protozoa degradation: Protozoa are not a good biodegrader as fungi, bacteria and algae.
However, their population has been shown to significantly reduce the number of bacteria available
for hydrocarbon removal. It means their presence in a biodegradation system may not always be
beneficial (Stapleton and Singh, 2002). Overall, due to limited evidence it does not play an
ecologically significant role in the degradation of hydrocarbons in the environment as algae and
fungi (Rogerson and Berger, 1981).

The protozoa are the main grazer on the degrading bacteria for organic contaminants, so the
interaction between protozoa and degrading bacteria will affect the result of bacteria degradation
directly. Mattison et al. (2005) constructed a model for the food chain in order to study the influence
of grazing bacteria of protozoa flagellate Heteromita globosa on the biodegradation of benzene and
methylbenzene.

Chen et al. (2007) reported protozoa infusorians can accelerate the biodegradation of
heterogenous substances in the environment such as PAH. For example, the degradation rate of
naphthalene can be improved 4 times than before. There are several possible hypotheses about the
mechanism of protozoa accelerating biodegradation of organic contaminants, which mainly include
the following six parts: (1) The nutrient mineralization which improves the turnover of nutrients,
(2) Bacteria activation which controls the quantity grazes the aged cells or excretes active
substance, (3) Selective grazing which reduces the competition to the resource and space and thus
is good for the growth of degrading bacteria, (4) Physical disturbance which can increase oxygen
content and the surface of degraded matters, (5) Direct degradation which can excrete special
enzymes participating in the degradation and (6) Co-metabolism which offers energy and carbon
resource for the bacteria during the degradation (Chen et al., 2007).

CONCLUSION
The emerging science and technology of bioremediation offers an alternative method to detoxify

contaminants. There are various ranges of microorganisms involved in the process of
bioremediation. Apart of bacteria, white rot fungi also play a significant role in biodegradation of
PAHs. They have a key enzymes lignin peroxides and manganese peroxidase which can convert
these PAHs into less harmful substances. Several algae have also capability  to  degrade  wide
range of PAHs. Although, protozoa not directly involved in the  process  of  biodegradation but it
can influence the rate of biodegradation. The present review is  an attempt to explore an answer
or advancement and biological questions  part  event  to  bioremediation to petroleum
hydrocarbons.
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