

 OPEN ACCESS Research Journal of Information Technology

ISSN 1815-7432
DOI: 10.3923/rjit.2016.66.74

Research Article
Analyzing Google File System and Hadoop Distributed File System

Nader Gemayel

Department of Compuer Science, Notre Dame University-Louaize, P.O. Box 72, Zouk Mosbeh, Zouk Mikayel, Lebanon

Abstract
A comparative analysis study between Google file system and Hadoop distributed file system was conducted in this study. Using
comarision techniques for architecture and development of GFS and HDFS, allows us use to deduce that both GFS and HDFS are
considered two of the most used distributed file systems for dealing with huge clusters where big data lives. This study will help
understand the architecture and highlight the common features and differences between GFS and HDFS.

Key words: Bigdata, GFS, HDFS, Hadoop, bigtable, HBase, MapReduce, analysis

Received: March 05, 2016 Accepted: June 21, 2016 Published: September 15, 2016

Citation: Nader Gemayel, 2016. Analyzing Google file system and Hadoop distributed file system. Res. J. Inform. Technol., 8: 66-74.

Corresponding Author: Nader Gemayel, Department of Computer Science, Notre Dame University-Louaize, P.O. Box 72, Zouk Mosbeh, Zouk Mikayel,
Lebanon

Copyright: © 2016 Nader Gemayel. This is an open access article distributed under the terms of the creative commons attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The author has declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/rjit.2016.66.74&domain=pdf&date_stamp=2016-09-15

Res. J. Inform. Technol., 8 (3): 66-74, 2016

Application

GFS client

File name, chunk index

Chunk location
Root

Dir 1

Dir 2

File A
File B

GFS master server

File name space

Chunk data Chunk location byte range

Server state

Instructions

GFS chunk server A

LINUX f ile system

LINUX f ile system

LINUX f ile system

DB

DB

DB

/root/dir 1

Chunk 5f 3s

Chunk 7f 2a

Chunk 8d3a

Chunk 2wsx

Chunk 1d33

Chunk 5w21

Chunk 9ytr

...
Dir 3

Dir 4

File A
File B
File n

GFS chunk server B

GFS chunk server X

Control message
Data message

INTRODUCTION

Big data is a term used to describe huge volume of data,
generated by digital process and media exchange all over the
world. Google file system and Hadoop distributed file system
were developed and implemented to handle huge amount of
data. Big data challenges such as velocity, variety, volume and
complexity were taken into consideration when GFS and
HDFS were developed. Google came up first with the design
of GFS and published it in white papers, then after Apache
open-source developed Hadoop based on Google’s white
papers. How GFS and HDFS work and manage data flow will
BBE explain. For both file systems, a comparison was made on
many levels and criteria. The GFS and HDF’S architecture
including database engines, components, data flow and many
other creterias were tackled and discussed.

MAIN GOAL OF GFS AND HDFS

The HDFS and GFS were built to support large files
coming from various sources and in a variety of formats. Huge
data storage size (Peta bytes) are distributed across thousands
of disks attached to commodity hardware. Both HDFS and GFS
are designed for data-intensive computing and not for normal
end-users1. Data-intensive computing is a class of parallel
computing used to process and analyze large amount of data
referred to as big data. Data reliability is achieved through
distribution architecture, even when failures occur within
chunk servers, master or network partitions. There is no limit
to the cluster that you can have. The size can be increased
anytime as per the need.

GOOGLE FILE SYSTEM

GFS architecture and components: The GFS is composed
of clusters. A cluster is a set of networked computers.
Figure 1 shows that, GFS clusters contain three types of
interdependent entities which are: Client, master and
chunk server. Clients could be: Computers or applications
manipulating existing files or creating new files on the system.
The master server is the orchestrator or manager of the cluster
system that maintain the operation log. Operation log keeps
track of the activities made by the master itself which helps
reducing the service interruptions to a minimum level. At
startup, master server retrieves information about contents
and inventories from chunk servers. Then after, the master
server keeps tracks of the location of the chunks with the
cluster. The GFS architecture keeps the messages that the
master server sends and receives very small. The master server
itself doesn’t handle file data at all, this is done by chunk
servers. Chunk servers are the core engine of the GFS. They
store file chunks of 64 MB size. Chunk servers coordinate with
the master server and send requested chunks to clients
directly.

GFS replicas: The GFS has two replicas: Primary and
secondary replicas. A primary replica is the data chunk that a
chunk server sends to a client. Secondary replicas serve as
backups on other chunk servers. The master server decides
which chunks act as primary or secondary. If the client makes
changes to the data in the chunk, then the master server lets
the chunk servers with secondary replicas, know they have to
copy the new chunk off the primary chunk server to stay in its
current state.

Fig. 1: Google file system architecture

67

Res. J. Inform. Technol., 8 (3): 66-74, 2016

Data warehouse Business intelligence, analytic layer,
decision support systems

Data connection

Management

Zookeeper Chukwa

Pig Hive Avro

Data access

Data processing

MapReduce framework

Data storage

HBaseHadoop Distributed File
System (HDFS)

Fig. 2: Hadoop components

MapReduce: MapReduce is a programming model developed
by Google and used by both GFS and HDFS. Based on Google
MapReduce white paper, Apache adopted and developed its
own MapReduce model with some minor differences. The
primary role of MapReduce is to provide an infrastructure that
allows development and execution of large-scale data
processing jobs. Therefore, MapReduce exploits the
processing capacity provided by computing clusters while, at
the same time offering a programming model that simplifies
the development of such distributed applications. MapReduce
make the decomposition of tasks and integration of results. It
provides job trackers and task trackers.

MapReduce is a programming model Google has used
successfully to process big data. A map function extracts
intelligence from raw data and a reduce function aggregates
the data output by map. MapReduce needs a distributed file
system and an engine that can distribute, coordinate, monitor
and gather the results.

The HDFS is a master and slaver framework which
contains nodes and NameNode. The NameNode is a center
server that manages the namespace in the file system. The
data node manages the data stored in it.

HADOOP DISTRIBUTED FILE SYSTEM

First of all, it should by clearly state that Hadoop has
Google origins. Based on three white papers published by
Google, which are: "Google file system2", "MapReduce:
Simplified data processing on large clusters3" and "Bigtable: A
distributed storage system for structured data4", Apache
developed Apache HDFS, Apache MapReduce and Apache
HBase, respectively. Almost 95% of the architecture described

in these three white papers is implemented in Apache projects
with some minor differences. Google released these white
papers with no code. So, it was up to engineers and scientists
at Apache to design and implement the architecture.

Hadoop components: Hadoop has the following
components, as shown also in Fig. 2.

Zookeeper: A centralized service for maintaining
configuration information, naming, providing distributed
synchronization and providing group services.

Chukwa: An open source data collection system for
monitoring large distributed systems. Chukwa is built on top
of the Hadoop Distributed File System (HDFS) and MapReduce
framework and inherits Hadoop’s scalability and robustness.

Pig: A platform for analyzing large data sets that consists of a
high-level language for expressing data analysis programs,
coupled with infrastructure for evaluating these programs.

Hive: The Apache Hive data warehouse software facilitates
querying and managing large datasets residing in distributed
storage. Hive provides a mechanism to project structure onto
this data and query the data using a SQL-like language called
HiveQL.

Avro: Apache Avro is a data serialization system. It has rich
data structures. A compact, fast and binary data format. It acts
as a container file, to store persistent data. It also provides
simple integration with dynamic languages.

MapReduce: Hadoop MapReduce has the same architecture
and functionality of Google MapReduce but the difference is
that Hadoop MapReduce was written in Java and GF’S
MapReduce was written in c++.

Moreover, not to forget that Google’s original version of
MapReduce work only with GFS file system but Hadoop’s
version can work with many file systems since it was adopted
by Apache open-source project hence used in many
architectures.

HBase : Apache HBase is the Hadoop database, a distributed
scalable and big data store

HDFS : Hadoop file system is a core component in the
Hadoop architecture. The HDFS sits in the data
storage layer in Hadoop. The HDFS and HBase will be
explained in more details in the coming sections

68

Res. J. Inform. Technol., 8 (3): 66-74, 2016

Underlying file system: The HDFS is the distributed file
system of Hadoop. What HDFS does is to create an abstract
layer over an underlying existing file systems running on the
machine. Underlying file systems might be ext3, ext4 or xfs.

Hadoop architechture: Since Hadoop comes from Google
white papers, it has the same master/slave architecture but in
different implementation. Hence, all processes or services in
the Hadoop file system are classified as slave or master.

MasterNode-HDFS nodes
NameNode: Hadoop has only one NameNode (master node
of the file system) which is a single point of availability failure,
so if it goes down the DataNode will lose control for blocks.

Every slave machine will run a DataNode daemon and
also run a TaskTracker daemon for MapReduce. NameNode
stores the metadata of files saved on DataNodes. It is
responsible for the namespace of the filesystem.

Hadoop 2.0 has also active/passive architecture for
the NameNode. When active NameNode fails, a passive
NameNode takes place within few seconds. This passive
secondary NameNode is not really a good solution and does
not really act as redundant to the primary NameNode, thus it
is not a high availability to the primary NameNode.

The primary NameNode, which keeps all the filesystem
metadata in RAM has no capability to persist this metadata
onto the disk.

Once the NameNode crashes, all the data in RAM are lost.
What the secondary NameNode actually does is to contact the
primary NameNode every 1 h, copy the metadata in RAM,
reshuffles and merges it into a clean file called a checkpoint.
The checkpoint file is then written or updated on the
secondary NameNode.

JobTracker: JobTracker receives job request from client and
manages MapReduce jobs. It monitors and detects failures in
task allocation. Hadoop cluster has one JobTracker only.

Slave node-MapReduce nodes
DataNode: DataNodes are the hardware machine running in
Hadoop cluster. Usually built from inexpensive commodity,
they are used to store data blocks and send them to clients.
DataNodes report periodically the list of data blocks to the
primary NameNode.

TaskTracker: TaskTrackers are Java-based virtual machine
developed to run tasks allocated by the JobTracker in
MapReduce. Usually TaskTrackers run better on the same

node of the DataNode, which maximizes data bandwidth.
If the above best-practice is not available, TaskTrackers
are placed on different nodes within the same rack in
cluster. In worst cases, if the alternative scenario is not also
available, TaskTracker is placed on a different rack within the
cluster.

COMPARISION BETWEEN GFS AND HDFS

Scalability: Both HDFS and GFS are considered as cluster
based architecture. Each file system runs over machines built
from commodity hardware. Each cluster may consist of
thousands of nodes with huge data size storage.

Implementation: Since GFS is proprietary file system and
exclusive to Google only, it can not be used by any other
company.

In the other part, HDFS based on Apache Hadoop
open-source project can be deployed and used by any
company willing to manage and process big data.

Yahoo! might be the most famous example where
clusters are managed by Hadoop with HDFS file system inside.
Yahoo! has more than 100,000 CPU in 40,000 computers
running Hadoop. Their biggest cluster contains around 4500
nodes.

Facebook uses Hadoop to store copies of internal logs
and dimension data sources and uses it as a source for
reporting/analytics and machine learning. They currently have
two major clusters:

C A 1100-machine cluster with 8800 cores and
about 12 Petabytes raw storage

C A 300-machine cluster with 2400 cores and about
3 Petabytes raw storage

EBay uses Apache on 532-machine cluster with Apache
HBase for search optimization and research.

Twitter, LinkedIn, Adobe, A9.com (Amazon) and many
other websites use Hadoop to store and process data logs,
batch jobs, processes for internal usage and structured data
storage on hundreds of clusters with thousands of nodes each.

File serving: In GFS, files are divided into units called chunks
of fixed size. Chunk size is 64 MB and can be stored on
different nodes in cluster for load balancing and performance
needs. In Hadoop, HDFS file system divides the files into units
called blocks of 128 MB in size5. Block size can be adjustable
based on the size of data.

69

Res. J. Inform. Technol., 8 (3): 66-74, 2016

Internal communication: Communication between chucks
and clusters within GFS is made through TCP connections. For
data transfer, pipelining is used over TCP connections. The
same method is in HDFS, but Remote Procedure Call (RPC) are
used to conduct external communication between clusters
and blocks.

Cache management: In GFS, cache metadata are saved in
client memory. Chunk server does not need cache file data.
Linux system running on the chunk server caches frequently
accessed data in memory.

The HDFS has “DistributedCache”. DistributedCache is
facility provided by the MapReduce to distribute
application-specific, large, read-only files efficiently. It also
caches files such as text, archives (zip, tar, tgz and tar.gz) and
jars needed by applications.

DistributedCache files can be private or public, that
determines how they can be shared on the slave nodes.

"Private" DistributedCache files are cached in a local
directory private to the user whose jobs need these files.

"Public" DistributedCache files are cached in a global
directory and the file access is setup in sucha way that they are
publicly visible to all users.

Files protection and permission: Suitebriar-Google
partner-mentions in its security analysis research that GFS
splits files up and stores it in multiple pieces on multiple
machines. File names have random names and are not human
readable. Files are obfuscated through algorithms that
change constantly. The HDFS implements POSIX-like mode
permission for files and directories. All files and directories
are associated with an owner and a group with separate
permissions for users who are owners, for users that are
members of the group and for all other users.

Replication strategy: The GFS has two replicas: Primary
replicas and secondary replicas.

A primary replica is the data chunk that a chunk server
sends to a client.

Secondary replicas serve as backups on other chunk
servers. User can specify the number of replicas to be
maintained.

The HDFS has an automatic replication rack based system.
By default two copies of each block are stored by different
DataNodes in the same rack and a third copy is stored on a
DataNode on a different rack.

File namespace:

C In GFS, files are organized hierarchically in directories and
identified by path names

C The GFS is exclusively for Google only
C The HDFS supports a traditional hierarchical file

organization
C Users or application can create directories to store files

inside
C The HDFS also supports third-party file systems such as

CloudStore and Amazon Simple Storage Service (S3)

Filesystem database: In this section, highlight one core
component in the architecture of GFS and Hadoop; the
database engine.

The GFS has bigtable database. Bigtable is a proprietary
database developed by Google using c++.

Based on "Bigtable" study white papers, Apache
developed its own database called HBase in Hadoop
open-source project6. The HBase is built with Java language.
The major common features between bigtable and HBase.

Big data: Ability to handle big amounts of data in a scalable
manner.

No-SQL: Non relational database and not SQL based. The
HBase is column-oriented database and bigtable is
three-dimensional mapping database; it maps row key,
column key and timestamp into one arbitrary byte array,
hence the naming.

Atomicity: They both have atomic transactions in read, write
and update.

Access control: Bigtable enforces access control on column
family level with three aspects: Authentication, authorization
and audit. This feature was not enabled in HBase until
May, 2014.

Cell versioning and custom timestamps are found in
HBase and bigtable using adjustable timestamps.

Batch writes: Batch write and batch table operations plus row
filtering when scanning rows.

Block cache: Bigtable and HBase provide block cache. When
reading blocks from storage files are cached internally.

70

Res. J. Inform. Technol., 8 (3): 66-74, 2016

Table 1: Bigtable anf HBase comparison
Feature/criteria Bigtable HBase
Software model Proprietary/closed-source Open-source
Framework used c++ Java
Second log Second log that can be used when the first log is not functioning fast N/A
Locality group Bigtable groups multiple column families into one group HBase handles each column family separately
Memory mapping Allows memory mapping of storage file directly into memory N/A
File format SSTable HFile
Client script Allows client script execution. Sawzall is used to N/A

enable users to process stored data
Working environment Bigtable works only on GFS HBase can work on many other file systems as long

as proxy or driver class run on top of it
Block support and Block compression in Bigtable is based GZip format with intention to use BMDiff and Zippy
block compression on BMDiff and Zippy two step process Till present, this issue is still under study by Apache
Client isolation Bigtable keeps the data served for clients isolated from each others N/A
Coprocessors Coprocessors acts as high-level call interface for clients This feature was initially developed by Google

Very flexible model for developing distributed services within its research on bigtable GFS before HBase
Examples: Automatic scaling, load balancing and request routing for applications acquired it November, 2011

Data verification Bigtable uses CRC checksums to make sure that data was written safely Technically HBase doesn’t have this feature
but was developed it with HDFS algorithm

In Table 1, key differences between Apache’s HBase and
Google’s bigtable are listed. Some are still under development
by Apache due to the fact that HBase came after and was built
according bigtable specs.

DATA FLOW INPUT AND OUTPUT

GFS read I/O:

C Read requests are sent by clients to master in order to
find out where a particular file on the system is stored

C Master server replies back with the location for the
chunk server acting as the primary replica holding the
chunk

C The master server provides a lease to the primary replica
for the desired chuck

C If the lease is not held by any replica, the master server
defines a chuck as primary and chooses the closest
chunkserver to client. That chunkserver becomes the
primary

C Finally, the client contacts the desired chunkserver
directly, which sends the data to the client

GFS write I/O:

C The client sends a request to the master server to
allocate the chunkserver acting as the primary replica
(Fig. 3)

C The master sends to the client the location of the
chunkserver replicas and identifies the primary replica

C The client sends the write data to all the replicas chunk
server’s buffer, starting with the closest. Data sent
through pipeline

C Once the replicas receive the data, the client tells the
primary replica to begin the write function

C The primary replica writes the data to the appropriate
chuck and then the same is done on the secondary
replica

C The secondary replica completes the write function and
reports back to the primary replica

C Finally, the primary replica sends the confirmation to the
client

HDFS read I/O:

C Client asks the NameNode about block’s location
C NameNode has metadata for all blocks location. It sends

blocks’ location back to the client
C Client seeks and retrieves the blocks directly from

DataNode where the blocks are placed

HDFS write I/O:

C The client sends a block write request to the NameNode
(Fig. 4)

C The NameNode responds back by telling on which
DataNodes the file’s blocks should be written

C Directly, HDFS client contacts the first DataNode over TCP
and sends “Ready” command. The first DataNode by its
turn sends it to the second DataNode and the same
process continues for the third DataNode

C “Ready” command is sent from the third DataNode to the
second one and finally to the first DataNode which
delivers it to the client telling all DataNodes are ready for
the write order

71

Res. J. Inform. Technol., 8 (3): 66-74, 2016

Application Request primary replica
chunkserver’s location

Send locationGFS client

8

1

2

Confirm: Rite f inished

Send write
order

Chunkserver A

Chunkserver X

Chunk

Chunk

WriteBuffer

Buffer

Block A

Block A

6

7

Write data

Write data

4
3

Se
nd

 w
rit

e
da

ta
 to

 re
pl

ic
as

’ b
uf

fe
r

Chunk

Buffer

Re
po

rt
ba

ck
: W

rit
e

co
m

pl
et

e

GFS master server
File name space
Root

Dir 1
Dir 2

Dir 3
Dir 4

/root/dir 1
Chunk 5f3s

Chunk 7f2a

Chunk 8d3a
Chunk 2wsx
Chunk 1d33
Chunk 5w21
Chunk 9ytr

File A
File B

File A
File B
File n

...

Control message
Data message

5

Block A

Chunkserver B

HDFS client
1

3

7

File: Hello.txt

4 6

Ack: Block A received

Ready?
Yes: Ready?

Switch 1 Switch 2

Data node 1

Block A
Block A

Block A

Rack 1

Yes, ready?
Data node 7

Data node 9

Yes, ready?

Rack 2

Core switch

NameNode

Rack awareness:

Rack 1
Data node 1

Rack 2
Data node 7
Data node 9

Permission to write “Hello.txt”

Write block A to DataNode: 1, 7, 9 2

Block A Block B Block C

5 Write block A
Ac

k:
Bl

oc
k A

 re
ce

iv
ed

Control message
Data message

Fig. 3: GFS write I/O

Fig. 4: HDFS write I/O

C The TCP pipeline is now ready to transfer the data block
C The client sends the first block wishing to write directly to

the first DataNode, then the second and finally third
DataNode

C All DataNodes update the NameNode about the written
block

C First DataNode tells the client that file’s block was written
successfully

C Then after, the client repeats the same scenario for the
rest of data blocks

MATERIALS AND RESULTS

Results of GFS and HDFS comparison can be resumed in
the Table 2.

72

Res. J. Inform. Technol., 8 (3): 66-74, 2016

Table 2: Summary comparison
Feature/criteria Google file system Hadoop distributed file system
Main goal Support large files Support large files

Variety of file formats Variety of file formats
Huge data storage size (Peta bytes) Huge data storage size (Peta bytes)
Data are kept forever Data are kept forever

Design goal Data-intensive computing Data-intensive computing
Not for normal end-users Not for normal end-users

Underlying file systems Only GFS file systems Underlying file systems might be ext3, ext4 or xfs
Scalability Cluster based architecture Cluster based architecture

Clusters may contains thousands of nodes Clusters may contains thousands of nodes
Implementations The GFS is proprietary file system The HDFS based on Apache Hadoop open-source project used

Can’t be used by any other company in Facebook, Twitter, LinkedIn, Adobe, A9.com (Amazon)
File serving Chunk size is 64 MB Block size is 128 MB. Can be adjustable
Data flow (I/O) Master server and chunk server NameNode and DataNode
Internal connections The TCP connections The TCP connections

For data transfer, pipelining is used over TCP connections Remote Procedure Call (RPC) is used to conduct external
communication between clusters and blocks

Cache management Cache metadata are saved in client’s memory The HDFS has “distributedcache”
Chunk servers don’t need cache file data DistributedCache files can be private or public
Linux system caches frequently accessed data in memory

Files protection and permission The GFS splits files up and stores it in multiple The HDFS implements POSIX-like mode permission for files
pieces on multiple machines and directories

Replication Strategy The GFS has two replicas: The HDFS has an automatic replication rack based system
Primary replicas and secondary replicas By default two copies of each block are stored

File system namespace Files are organized hierarchically in directories and The HDFS supports a traditional hierarchical file organization.
identified by path names. Users or application can create directories to store files inside.
The GFS is exclusively for Google only The HDFS also supports third-party file systems such as

CloudStore and Amazon Simple Storage Service (S3)
Database Bigtable HBase

DISCUSSION

Table 2 summarized the differences and
commonalities between GFS and HDFS. The GFS and HDFS
share many common features, but are also different in
some ways. Google was the leader in big data management
and design before Apache came up with their open-source
project.

Large companies like facebook and Ebay relies on HDFS
to manage their huge amount of data. Apache is still
improving HDFS hence, becoming one of the biggest
open-source projects ever developed.

CONCLUSION

Big data is increasing frequently hence becoming one of
the major trends and challenges in information technology
and dealing with it requires tailored-made file systems and
hardware architecture, built on robust framework and
platforms.

Distributed file system are still in their early phase
evolution.

Coda, XtreemFS, AFS, lustre, ceph and many more are
good examples of newly developed DFS.

It’s up to the company’s data engineers to choose and
implement DFS based on their needs or to design and
develop their own architecture as Google did.

ACKNOWLEDGMENT

I would like to express my special thanks and
appreciation to my teacher Dr. Jacques Abou Abdo as well as
my senior at Banque Libano-Francaise who provided me
support and motivation towards accomplishing this research
study.

REFERENCES

1. Kouzes, R.T., G.A. Anderson, S.T. Elbert, I. Gorton and
D.K. Gracio, 2009. The changing paradigm of data-intensive
computing. Computer, 42: 26-34.

2. Ghemawat, S., H. Gobioff and S.T. Leung, 2003. The google file
system. Proceedign of the 19th ACM Symposium on
Operating Systems Principles, October 19-22, 2003, ACM,
Lake George, NY., pp: 29-43.

73

Res. J. Inform. Technol., 8 (3): 66-74, 2016

3. Dean, J. and S. Ghemawat, 2004. MapReduce: Simplified
data processing on large clusters. Proceedings of the
6th Symposium on Operating Systems Design and
Implementation, December 6-8, 2004, San Francisco, CA.,
USA., pp: 137-150.

4. Chang, F., J. Dean, S. Ghemawat, W.C. Hsieh and
D.A. Wallach et al., 2008. Bigtable: A distributed storage
system for structured data. ACM Trans. Comput. Syst., Vol. 26,
No. 2. 10.1145/1365815.1365816.

5. Shafer, J., S. Rixner and A.L. Cox, 2010. The hadoop distributed
filesystem: Balancing portability and performance.
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, March 28-30,
2010, White Plains, NY., pp: 122-133.

6. Vora, M.N., 2011. Hadoop-HBase for large-scale data.
Proceedings of the International Conference on
Computer Science and Network Technology, Volume 1,
December 24-26, 2011, Harbin, pp: 601-605.

74

	Research Journal of Information Technology.pdf
	Page 1

