Congenital Hypoplasia of the Fore Claw in Dairy Cows: Report of Two Cases

Mohsen Nouri, Iraj Nowrouzian and Taghi Madadzadeh

Department of clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

Department of clinical Sciences, Faculty of Veterinary Medicine, University of Islamic Azad, Urmia, Iran

Corresponding Author: Mohsen Nouri, DVM, Iranian Arad Pajouh Veterinary University Center, Tehran, Iran, P.O. Box: 14195-181, Tehran-Iran Tel: +98-2188065331 Fax: 6653222

ABSTRACT

Lameness is considered to be a major welfare and economic problem throughout the world. Foot and leg shape are both highly heritable and poor limb conformation is a predisposing factor for lameness. The objective of this study is to report of congenital hypoplasia of the claw in fore limb in two dairy cows. The case included two local and Holstein dairy cows presenting hypoplasia of the medial claw in forelimb. Both medial fore claws were generally narrower than normal. Cows exhibited a mild to severe lameness. The Sarabi cow showed a marked and painful bruising on the lateral heel region and Holstein cow showed sole ulcer with a circumscribed granulation tissue located in the region of the sole-bulb junction (zone 4) in both fore limbs. Poor conformation result to regional overloading on the sole and heel influence the distribution of different lesions. This change in claw shape also combined with pressure-induced pain on the affected claw might force the cow to distribute its weight to the contralateral claw. The feature was considered consistent with the anomaly entity described as hypoplasia of the claw.

Key word: Cow, sarabi breed, congenital anomaly, hypoplasia of the claw, overloading

INTRODUCTION

Lameness is considered to be a major welfare and economic problem throughout the world (Whay et al., 2003; Bruijnis et al., 2010; Nouri et al., 2011). Apart from the negative economic consequences and welfare, the owners are under a strong moral obligation to prevent any suffering from livestock and to increase welfare standards (Boelling and Pollott, 1998a) by selection of better claw and leg conformation (Blowey, 1993; Boettcher et al., 1998). For these reasons, claw and leg traits have been under investigation for over three decades (Distl et al., 1984; Hahn et al., 1984; Ral, 1990; Boelling and Pollott, 1998a, b; Boettcher et al., 1998; Fatehi et al., 2003; Van Dorp et al., 2004). Foot and leg shape are both highly heritable and poor limb conformation is a predisposing factor for lameness (Eddy and Scott, 1980; Smit et al., 1986; Ral, 1990; Wells et al., 1993; Murray et al., 1994; Boettcher et al., 1998; Van Dorp et al., 2004).

The inner and outer claws often differ in size and shape; the medial claw of the front foot is larger than the lateral (Greenough et al., 1981; Murray et al., 1996; Greenough, 2007). Hypoplasia of the claw is a congenital defect of the bovine claw. In hypoplastic claw, the lateral claw of the hind limb is smaller than the medial claw (Greenough et al., 1981). Greenough (1982) observed that in about 18 per cent of cattle the lateral hind claws were smaller than the medial. This claw contact
may impede locomotion and contribute to lameness (Greenough et al., 1981). There are very few reports of this defect and it can be assumed to be quite rare. In the literature, there is no published study of congenital hypoplasia of the claw in forelimb to our best knowledge. The objective of this study is to report of congenital hypoplasia of the medial claw in forelimb in two local and Holstein dairy cows.

CASE DESCRIPTION

Cow No. 1: A 3-year-old, non-pregnant, 350 kg Sarabi cow with minor pathological changes such as claw hypoplasia in the medial fore claw were obtained from a number of slaughterhouse cattle markets in Ardebil in July 2009. The medial fore claws were generally narrower than normal. The lateral claws of the forelimb were curved medially and overlay the medial claw (Fig. 1a). The owner had purchased the cow approximately 3 months previously. The cow was housed with 40 other adult Sarabi cows, none of which had any similar clinical signs. The cow showed a grade 3 (of 5 = non-weight bearing) lameness on the left forelimb. Examination of the foot revealed a marked and painful bruising on the lateral heel region (Fig. 1b). The animal has no clinical evidence of systemic disease.

Cow No. 2: A 4-year-old, 600 kg Holstein cow presented with signs of severe lameness (grade 4 of 5 = non-weight bearing) in the left forelimb in August 2011. The cow was in second lactation and at 6 months of pregnancy and was otherwise healthy. The cow produced a high milk yield level. The dairy herd of origin (Varamin) had no other incidents of hypoplasia of the claw and the cows had been bred by artificial insemination. Cows in this herd exhibit a mild incidence of foot lameness associated with subclinical laminitis.

Both medial fore claws were generally narrower than normal (Fig. 2a). The lateral claws of the forelimb were strongly curved medially and overlay the medial claw. The cow was reacted to

Fig. 1(a-b): (a) Hypoplasia of the claw in left fore limb of sarabi dairy cow and (b) The same case in photo A showing marked bruising and cyanosis is obvious in the hind half of zone 6 (white arrows)
Fig. 2(a-b): (a) Hypoplasia of the claw in left fore limb of Holstein dairy cow, (b) The same case in photo A showing sole ulcer in medial claw (black arrow). This case showed sole ulcer in both medial claws of forelimb.

pressure on the sole area. Examination of the medial fore claw revealed a typical clinical sign of detachment of the heel-horn from around the bulb; the horn covering the medial heel bulb separated from the corium at the sole and heel. Further paring exposes an ulcer with a circumscribed granulation tissue about 1.5 cm in diameter located in the region of the sole-bulb junction (zone 4). The lesion was prone to bleed and painful when touched. There was not any sign of granular or velvet like surfaces of the lesion on the zone 4 (Fig. 2b). Both medial claws of forelimb has affected by sole ulcer. Interdigital hyperplasia (IDH) was seen in both fore and hindlimb.

DISCUSSION

The physical characteristics of the cow’s legs and feet can contribute to the incidence of lameness and so any information on the occurrence of and influences on, these traits could prove to be of value in dairy cow production (Boelling and Pollott, 1998b; Van der Waaij et al., 2005). The genetic correlations suggest that cows genetically susceptible to some type of health problems are likely to be susceptible to other health problems as well (Enevoldsen et al., 1991; Boettcher et al., 1998; Koenig et al., 2005; Van der Waaij et al., 2005). A shallow foot angle, high heels, a long diagonal and sickled rear legs were associated with a worsening walking ability (Wells et al., 1993; Boelling and Pollott, 1998a; Van Dorp et al., 2004).

Although the aetiology of sole lesions is not well known, it is clear from experience that both overburdening of the lateral hind claw, as compared with the medial hind claw and some nutritional aspects can be considered important predisposing factors (Toussaint-Raven, 1973; Vermunt and Greenough, 1994). Numerous factors such as laminitis, claw overgrowth, sole thickness and claw size have been implicated in the development of sole ulcers (Eddy and Scott, 1980; Enevoldsen et al., 1991; Vermunt and Greenough, 1994; Van Amstel and
Shearer, 2006). Sole lesions seem to be genetically correlated to claw angle and length; Longer claws were genetically associated with higher total lesion scores and more sole ulcers (Smit et al., 1986). Other studies also have reported that daughters of certain bulls had a higher incidence of sole ulcers and white line lesions (Singh et al., 1993).

The majority of foot lesions involve the lateral digits of hind limb while the least number of digital lesions were recorded in the digits of the forelimb (Toussaint-Raven, 1973; Eddy and Scott, 1980; Russell et al., 1982; Jubb and Malmo, 1991; Murray et al., 1996; Nouri and Helan, 2012). These differences between front and hind feet in environment, use and shape clearly influence the distribution of different lesions to different degrees (Russell et al., 1982). The difference may be explained partly by the fact that the hind feet are more often abnormally shaped than front feet and are more subjected to the transitory loads (Russell et al., 1982).

The high incidence of abnormal claws associated with lameness may indicate that hereditary factors are involved in the aetiology of the disease (Eddy and Scott, 1980; Russell et al., 1982). Koenig et al. (2005) found a uniform size of both claws were associated with fewer disorders. It seems likely that the size and shape change in hypoplastic claws is a cause or effect of differences in loading between claws. Thus, the distribution of different lesions to different degrees will change. The differences between front and hind feet in environment, use and shape clearly influence the distribution of different lesions to different degrees (Russell et al., 1982). Ossent et al. (1997) suggested mechanical forces applied to the sole of the claw result from a permutation of claw size and shape, body weight, conformation of the limbs, claw hardness and the quality of the surface over which the animal walks.

Poor conformation result to regional overloading on the sole and heel. It has been proposed that this great variability of weight bearing on the sole and heel leads to contusions (bruising) (Toussaint-Raven, 1973; Van Amstel and Shearer, 2001). On the other hand, a change in claw shape due to lameness combined with pressure-induced pain on the lateral claw might force the cow to distribute its weight to the medial claw (Van der Waaaij et al., 2005). Neveux et al. (2006) also found strong reciprocal relationships between the degree of load applied to contralateral hooves: When a single claw was on an uncomfortable surface, the weight removed from this claw was transferred primarily to the contralateral claw. A shifting of weight between contralateral limbs may increase the risk of secondary claw injuries (Hood et al., 2001).

Foot and leg shape are both highly heritable and poor limb conformation is a predisposing factor for lameness (Eddy and Scott, 1980; Ral, 1990; Murray et al., 1994; Boettcher et al., 1998). Therefore, selection could be used to decrease the incidence of disease (Blowey, 1993; Boettcher et al., 1998; Boelling and Pollott, 1998a).

Hypoplastic hooves may be seen in mature as well as young animals and should be regarded as a separate entity, not a stage in development of ‘corkscrew claw’ with which it may be confused in appearance (Greenough et al., 1981). In this study, the feature was considered consistent with the anomaly entity described as hypoplasia of the claw by Greenough (1982), Greenough et al. (1981).

CONCLUSION

It seems likely that the poor conformation result to regional overloading on the sole and heel influence the distribution of different lesions between claws. Foot and leg shape are both heritable and poor limb conformation is a predisposing factor for lameness. Therefore, selection could be used to decrease the incidence of disease.
ACKNOWLEDGMENT

The cooperation of dairy farmer and hoof trimmers in this study was greatly appreciated.

REFERENCES


