Intracellular Concentrations of Fosfomycin in Alveolar Macrophages from Weaning Piglets

1Area Toxicology, Department of Pathophysiology, Faculty of Veterinary Science, Veterinary Research Center Tandil (CIVETAN-CONICET), National University of Central Buenos Aires, Tandil, Argentina
2Bunge and Born Foundation, Argentina
3National Council of Scientific and Technical Research, Argentina
4Scientific Research Commission of Buenos Aires Province, Argentina

Corresponding Author: D.S. Perez, Campus Universitario, Paraje Arroyo Seco s/n, B7000, Tandil, Buenos Aires, Argentina

ABSTRACT

At weaning, piglets are more susceptible to infectious diseases, being respiratory syndromes one of the most frequent conditions. Fosfomycin is indicated for the treatment of a variety of porcine bacterial pathogens, with MIC$_{90}$ ranging between 0.25-0.50 µg mL$^{-1}$. Fosfomycin exhibits a time-dependent killing. Thus, killing of bacteria occurs when its concentrations remain constantly above the MIC. Fosfomycin concentrations in respiratory cells and epithelial lining fluid of pigs have already been studied. Although, fosfomycin showed clinical efficacy in the treatment of pulmonary diseases, concentrations in alveolar macrophages (biophase for facultative and obligate intracellular microorganisms) have not been established in any species. The present study determined the intracellular concentrations of disodium fosfomycin in alveolar macrophages after a single IM dose of 15 mg kg$^{-1}$ in the gluteal muscle. Concentrations ranged from 0.14-1.52 µg mL$^{-1}$, being lower than those found in epithelial lining fluid (49.03%) and respiratory cells (54.48%). The C_{max} was 1.52 µg mL$^{-1}$ and T_{max} was 4 h. Concentrations exceeded the MIC$_{90}$ for most pathogens of importance in pig production for up to six hours ($T>MIC = 6 \text{ h}$). Therefore, fosfomycin may be useful in the treatment of lung infections caused by facultative intracellular microorganisms.

Key words: Swines, antibiotic, macrophages, cellular drug penetration

INTRODUCTION

In pig production, weaning is considered as a critical period for piglets. It is characterized by a decrease in food intake that leads to a status of under nutrition, affecting other aspects of animal physiology and metabolism (Dirkzwager et al., 2005). During this period, animals are more susceptible to infectious diseases (Nabuurs et al., 1993). Respiratory syndromes are one of the most frequent conditions that occur at weaning. They are a common cause of morbidity and mortality. Therefore, they are considered one of the most significant problems in modern intensive swine production systems (Gardner and Hird, 1990; Galina et al., 1994; Done and Paton, 1995; Christensen et al., 1999; Thanawongnuwech et al., 2000; Carr, 2001; Cloutier et al., 2003; Dosen et al., 2007). The intracellular and interstitial fluids are the pulmonary biophase of facultative microorganisms such as Mycoplasma hyopneumoniae, Bordetella bronchiseptica, Salmonella cholerasuis, Pasteurella multocida and Streptococcus spp. Different antibiotics have
been used for decades to reduce pathogen infections in pigs. For this reason, many bacteria have become resistant to the most frequently used antimicrobials (Dirkzwager et al., 2005). Fosfomycin (FOS) (cis-1, 2-epoxyphosphonic acid), a broad-spectrum antibiotic structurally unrelated to other classes of antimicrobial agents, is used in swine production in Central and South America and in various Asian countries. The FOS is indicated for the treatment of a variety of porcine bacterial pathogens (Haemophilus parasuis, Streptococcus suis, Pasteurella multocida, Bordetella bronchiseptica, Staphylococcus hyicus and Escherichia coli), which are usually associated with stress and/or viral diseases. The minimum inhibitory concentration required to inhibit the growth of 90% of the microorganisms (MIC$_{90}$) for most of the important pathogens in swine production has been established as 0.25-0.5 µg mL$^{-1}$ (Fernandez et al., 1995). The FOS exhibits a time-dependent killing. Thus, killing of bacteria occurs when its concentrations remain constantly above the MIC (Aliabadi and Lees, 1997; Toutain et al., 2002). In this regard, for an antibiotic to be effective against relevant pathogens, it is essential to reach concentrations higher than the MIC at the site of action (Nix et al., 1991; Schentag and Ballow, 1991; Toutain et al., 2002).

The FOS penetration has been demonstrated in phagocytic cells, where it reaches high concentrations, showing an intracellular activity close to that of rifampicin (Trautmann et al., 1992). Antibiotic penetration does not alter the ability of ingestion and destruction by these cells, as it has been demonstrated by in vitro studies (Hoger, 1985). Morikawa et al. (1993) and Honda et al. (1998) have shown that FOS has immune-modulatory effects on lymphocytes. Similarly, Krause et al. (2001) studied the effect of FOS on neutrophil function and showed that the destruction of microorganisms is increased when incubated with the antibiotic. Perez et al. (2013) studied FOS penetration in swine intestinal cells (IPEC-J2) and they found that FOS concentrations exceed the MIC$_{90}$ for the most important pathogens in swine intestinal infections. Therefore, it is apparent that this antibiotic is an alternative for the treatment of intestinal infections in pigs. Martinez et al. (2013) studied the penetration of FOS into IPEC-J2 cells in the presence or absence of the mycotoxin deoxynivalenol (DON) and they concluded that the non-toxic concentration of DON on IPEC-J2 cells after short-term exposure interferes with the pharmacokinetics of the antibiotic. Perez et al. (2012) showed that FOS concentrations in HEP-2 cells, a respiratory cell line, exceeded the MIC$_{90}$ for the pathogens which frequently cause swine respiratory infections. Therefore, it is apparent that FOS is an alternative for the treatment of intracellular respiratory infections in pigs. Furthermore, determined FOS penetration in HEP-2 cell cultures and their interactive effect with DON and they concluded that the presence of the mycotoxin does not alter the intracellular distribution of the antibiotic. On the other hand, Soraci et al. (2012) demonstrated that FOS concentrations in Epithelial Lining Fluid (ELF) were above the MIC$_{90}$ value for Streptococcus up to 8 h post IM administration of 15 mg kg$^{-1}$ of FOS in weaning piglets.

The FOS showed clinical efficacy in the treatment of pulmonary diseases. Nevertheless, concentrations in Alveolar Macrophages (AM) (biophase for facultative and obligate intracellular microorganisms) have not been established in any species yet. Assuming that the determination of FOS concentration in the biophases represents the key parameter for establishing efficacy of antibiotics, the objective of this study was to characterize the penetrating capacity of FOS in alveolar macrophages and its relationship with serum concentrations in weaning piglets.

MATERIALS AND METHODS

Six weaning piglets (three males and three females), clinically healthy, 25-28 days of age, were used in this assay. Disodium FOS was supplied by Bedson Laboratories S.A., Pilar, Buenos Aires,
Argentina. It was dissolved in a 10% sodium citrate solution (pH: 6.8). To minimize stress and facilitate blood sampling, a permanent long catheter was placed in the left external jugular vein of each piglet. The study was carried out according to the rules of ethics approval of the Experimental Ethics Committee of the Faculty of Veterinary Science, UNCPBA, Argentina.

Alveolar macrophages intracellular concentrations of disodium FOS after a single IM dose of 15 mg kg\(^{-1}\) in the gluteal muscle were evaluated. Macrophages were obtained from bronchoalveolar lavage fluid (BALF) samples. To procure BALF samples, a flexible fiber optic bronchoscope (Olympus BF-P20D) was used. The bronchoscope was pushed into the bronchus trachealis which leads into the right cranial lung lobe (Shields and Riedler, 2000; Baltes et al., 2001; Scollo et al., 2011; Soraci et al., 2011). Seven milliliters of 0.9% sterile saline solution (prewarmed to 30°C) were introduced and recovered by using a vacuum pump aspiration with a maximum of 15 kPa (Shields and Riedler, 2000; Baltes et al., 2001). A range between 15 and 18 mL of BALF were obtained after repeating the washings three times (Shields and Riedler, 2000). The procedure of instillation and collection was completed in <1 min (Baughman et al., 1983; Dohn and Baughman, 1985; Rennard et al., 1986; Grigg et al., 1991; Lamer et al., 1993; Baughman, 1997; Mombarg et al., 2002). The BALF samples were collected after 1, 2, 3 and 6 h of IM administration of FOS. Lavage sample were immediately centrifuged at 2000 rpm for 10 min and the supernatant was separated from the pellets. The BALF samples, stored in 1.5 mL tubes, were centrifuged at 4°C and 3500 rpm for 15 min. Supernatants were removed and the pellets were resuspended in 500 µL of HPLC water. Ten microliter of the resuspended pellets were taken and mixed with 10 µL of trypan blue to determine cell viability. Cell count was performed in a Neubauer chamber. Samples were ultrasonicated for 30 min to release FOS from AM. Vials were filtered with 0.22 µm filters and finally analyzed by HPLC-MS/MS. Since, the number of cells in each sample was different, results were extrapolated to 400,000 cells, corresponding to the number of macrophages present in a well monolayer of a 6-well plate. To calculate the final intracellular concentrations of FOS in AM, it was considered that the pellet was resuspended in 500 µL of HPLC water and that there is an intracellular water volume of 1.50 µL in 400,000 macrophages (dilution factor: 0.5015).

The FOS concentrations were measured using a High Performance Liquid Chromatography-Mass-Mass Spectrometry (HPLC-MS/MS) according to the method determined by Soraci et al. (2012). The HPLC-MS/MS (Thermo Electron Corporation) system consisted of a Finnigan Surveyor autosampler and a quaternary pump Finnigan MS. The detector was a mass spectrometer quantum triple quadrupole discovery thermo max, equipped with an ESI source. The nitrogen used as nebulizer gas and envelope was obtained by a nitrogen generator peak scientific (Inchinnan). Data processing was performed using the Xcalibur software, also purchased from Thermo. A workstation Turbo Vap (caliper) with bath temperature control and airflow was used for solvent evaporation. The mass spectrometer was operated in the negative ionization mode. The adjustment parameters were optimized with individual aqueous solutions of 10 mg mL\(^{-1}\) FOS. An injection pump directly infused solutions to ion source, while the mobile phase was delivered from the LC pump via a T-connection to give the corresponding chromatographic flow rate. The spray voltage was set to 3800 eV, the capillary temperature was 350°C. Argon (purity 99.99%) at 1.6 m torr was used for Collision-Induced Dissociation (CID) in the collision cell. The CID energy source was set at -8 eV. Detection and quantification of FOS was achieved by single reaction monitoring of the transitions m/z 137-79 with optimized collision energy of 25. Separation was performed on a Phenomenex CN (cyano) (411 Madrid Avenue Torrance, CA90501-1430, USA), stationary phase, 4.6×75 mm id, 5 µm column. The mobile phase consisted of acetonitrile: water...
20:80 isocratic mode at a flow rate of 100 µL min⁻¹. The column was maintained at 30°C. The samples were kept at 10°C in the autosampler. The injection volume of the sample was 20 µL and the chromatographic run was 6 min.

RESULTS
Concentrations ranged from 0.14-1.52 µg mL⁻¹. The Cₘₐₓ was 1.52 µg mL⁻¹ and Tₘₐₓ was 4 h. Table 1 shows FOS average intracellular concentrations found for each sampling time and some pharmacokinetics parameters (Tₘₐₓ; Cₘₐₓ). Figure 1 shows FOS average intracellular concentrations in AM after an IM administration of disodium FOS at 15 mg kg⁻¹ in weaning piglets.

DISCUSSION
Intracellular penetration, accumulation and disposition of antibacterial agents are crucial for effective treatment of infections caused by intracellular bacteria. Intracellular concentrations and locations of both antibacterials and bacteria remain poorly understood and further research is needed to establish the importance of these concepts (Butts, 1994). Measurement of antibiotic concentrations achieved in lung parenchyma, ELF, bronchial mucosa of bronchial secretions has shown variable levels for the same drug. Many respiratory infections are caused by obligate or facultative intracellular pathogens, which may be eradicated as a result of drug intracellular penetration and accumulation, as shown in several models of phagocytic cells and as a result of intracellular antibacterial activities (Bergogne-Berezin, 1995). In previous works from our research group, disodium FOS concentrations in serum (Soraci et al., 2011), respiratory cells (HEP-2) (Perez et al., 2012) and ELF (Soraci et al., 2011) have been determined. Considering our previous studies, it was found that FOS concentrations were significantly lower (p<0.05) in AM than in ELF

Table 1: FOS average intracellular concentrations and standard deviations found for each sampling time and some pharmacokinetics parameters (Tₘₐₓ; Cₘₐₓ) in AM after IM administration of disodium FOS at 15 mg kg⁻¹ in weaning piglets

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>FOS average concentration (µg mL⁻¹)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.45</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.60</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>1.52*</td>
<td>0.02</td>
</tr>
<tr>
<td>6</td>
<td>1.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

FOS: Fosfomycin, SD: Standard deviation, AM: Alveolar macrophages

Fig. 1: Fosfomycin average intracellular concentrations (+1 SD) in AM after IM administration of disodium Fosfomycin at 15 mg kg⁻¹ in weaning piglets
Fig. 2: Differences between fosfomycin concentrations (mean +1 SD) in AM, ELF and HEP-2 cells. ELF and HEP-2 cells FOS intracellular concentrations were determined on previous works of our research group (Soraci et al., 2012; Perez et al., 2012) after the IM administration of disodium FOS at a dose of 15 mg kg\(^{-1}\) at every sampling time points. However, the intracellular concentrations in AM correspond to 49.03% of the concentration achieved in bronchial fluid (AM: 1.52 µg mL\(^{-1}\) vs ELF: 3.10 µg mL\(^{-1}\)). Concentrations found in AM were also lower (54.48%) than those found in HEP-2 cells (2.79 µg mL\(^{-1}\)) after incubation of the cells with a dose of 280 µg mL\(^{-1}\) (which corresponds to an in vivo dose of 15 mg kg\(^{-1}\) of disodium FOS). Tmax (4 h) was higher than that found in ELF (2.50 h), although it is lower than the Tmax found in HEP-2 cells (12 h). Figure 2 shows the differences between FOS concentrations in AM, ELF and HEP-2 cells. It is concluded that concentrations found in AM exceeded the MIC\(_{90}\) for most pathogens of importance in pig production (0.25-0.50 µg mL\(^{-1}\)) (Fernandez et al., 1995) (T>MIC = 6 h). Therefore, FOS may be useful in the treatment of lung infections caused by facultative intracellular microorganisms. However, it is well-known that the pathophysiological changes induced by inflammation that occur in the lungs of infected pigs (dilation of the capillaries and increased vascular supply to the infected region) may influence the antibiotic pharmacokinetics in the respiratory tract of swines (Baggot, 1977; Agerso and Friis, 1998). Thus, additional studies on FOS pharmacokinetics should be carried out in diseased pigs.

REFERENCES

