Electrochemical Properties of Cathode LiNi$_{1-x}$Ti$_x$O$_2$ Synthesized by Milling and Solid-State Reaction Method

1MyoungYoon Song, 1ChanGi Park, 2SunDo Youn, 2YoungHo Na and 3HyeRyoung Park
1Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Engineering Research Institute, Chonbuk National University, 664-14 1ga Deogjindong Deogjingu Jeonju, 561-756, Republic of Korea
2Division of Applied Chemical Engineering, Chonnam National University, 300 Yongbongdong Bukgu Gwangju, 500-757, Republic of Korea

Abstract: LiNi$_{1-x}$Ti$_x$O$_2$ (y = 0.005, 0.01, 0.025, 0.05 and 0.1) were synthesized by milling and solid-state method. Their electrochemical properties were then compared with those of LiNi$_{1-x}$M$_x$O$_2$ (M = Ga$^+$ and In$^+$.). All the samples had the R 3 m structure. LiNi$_{1-x}$Ti$_{0.5}$O$_2$ has the largest first discharge capacity 179.8 mAh g$^{-1}$ and the discharge capacity 113.8 mAh g$^{-1}$ at the 20th cycle. LiNi$_{1-x}$Ti$_{0.5}$O$_2$ has the smallest first discharge capacity 125.4 mAh g$^{-1}$. The samples exhibit similar cycling performances. LiNi$_{1-x}$Ga$_{0.5}$O$_2$ and LiNi$_{1-x}$In$_{0.5}$O$_2$ had the best electrochemical properties among the samples substituted by the same element, respectively. Among LiNi$_{1-x}$Ga$_{0.5}$O$_2$, LiNi$_{1-x}$In$_{0.5}$O$_2$, and LiNi$_{1-x}$Ti$_{0.5}$O$_2$, LiNi$_{1-x}$Ti$_{0.5}$O$_2$ has the largest first discharge capacity, but has the worst cycling performance. LiNi$_{1-x}$Ga$_{0.5}$O$_2$ has the smallest first discharge capacity, but has the smallest capacity degradation rate 0.70 mAh g$^{-1}$ cycle$^{-1}$.

Key words: LiNi$_{1-x}$Ti$_x$O$_2$, milling, solid-state reaction method, electrochemical properties, L$_{max}$/T$_{max}$, R-factor

Introduction

The transition metal oxides such as LiMn$_2$O$_4$ (Tarascon et al., 1991; Armstrong and Bruce, 1996; Song and Ahn, 1998), LiCoO$_2$ (Ozawa, 1994; Alcatala et al., 1997; Peng et al., 1998) and LiNiO$_2$ (Dahn et al., 1990, 1991; Marin et al., 1991; Ebner et al., 1994) have been investigated in order to apply them to the cathode materials of lithium secondary battery. LiMn$_2$O$_4$ is very cheap and does not bring about environmental pollution, but its cycling performance is not good. LiCoO$_2$ has a large diffusivity and a high operating voltage and it can be easily prepared. However, it has a disadvantage that it contains an expensive element Co. LiNiO$_2$ is a very promising cathode material since it has a large discharge capacity (Nishida et al., 1997) and is relatively excellent from the view points of economics and environment. On the other hand, its preparation is very difficult as compared with LiCoO$_2$ and LiMn$_2$O$_4$.

It is known that Li$_{1+y}$Ni$_{1-x}$O$_2$ forms rather than stoichiometric LiNiO$_2$ during preparation. This phenomenon is called cation mixing. Excess nickel occupies the Li site, destroying the ideally layered structure and preventing lithium ions from easy movement for intercalation and deintercalation during cycling. This results in a small discharge capacity and a poor cycling performance. To solve the problem of cation mixing, Co$^{2+}$, Al$^{3+}$, Mn$^{2+}$ and Ti$^{4+}$ ions were substituted for lithium ion in LiNiO$_2$.

Corresponding Author: MyoungYoon Song, Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Engineering Research Institute, Chonbuk National University, 664-14 1ga Deogjindong Deogjingu Jeonju, 561-756, Republic of Korea Tel: +82-63-270-2379 Fax: +82-63-270-2886
(Gao et al., 1998; Kim and Amine, 2001; Broussely, 1999; Caurant et al., 1996; Zhang et al., 2004; Amriou et al., 2004; Shinova et al., 2005). According to Kim and Amine (2001, 2002) and Gao et al. (1998), the substitution of Ti for Ni resulted in a large discharge capacity and a good cycling performance.

In this study LiNi$_{1-y}$Ti$_y$O$_2$ ($y = 0.005, 0.01, 0.025, 0.05$ and 0.1) were synthesized by milling and solid-state method and the electrochemical properties of the synthesized samples were investigated. Their electrochemical properties were then compared with those of LiNi$_{1-y}$M$_y$O$_2$ (M = Ga$^{3+}$ and In$^{3+}$) synthesized by the same method in our earlier study (Kim et al., 2005a,b). The substituted Ga and In have the same oxidation number as Ti.

Materials and Methods

The LiNi$_{1-y}$Ti$_y$O$_2$ ($y = 0.005, 0.01, 0.025, 0.05$ and 0.1) are synthesized by milling and solid-state method under the optimum conditions for the preparation of LiNiO$_2$, previously studied (Kim et al., 2005). LiOH \cdot H$_2$O (Kojundo Chemical Lab. Co., Ltd, purity 99%), Ni(OH)$_2$ (Kojundo Chemical Lab. Co., Ltd, purity 99.9%), TiO$_2$ (Aldrich Chemical, 99.9%) are used as starting materials. The starting materials are mechanically mixed by SPEX milling for 1 h. The mixed materials are preheated at 450$^\circ$C for 5 h in air, then pressed into pellet and calcined at 750$^\circ$C for 30 h under oxygen stream. The phase identification of the synthesized samples is carried out by X-ray powder diffraction analysis (Rigaku III/A diffractometer) using Cu Kα radiation. The scanning rate is 6°min$^{-1}$ and the scanning range of diffraction angle (2θ) is 10° to 80°. The electrochemical cells consist of LiNi$_{1-y}$Ti$_y$O$_2$ as a positive electrode, Li foil as a negative electrode and electrolyte [Purelyte (Samsung General Chemicals Co., Ltd.)] prepared by solving 1 M LiPF$_6$ in a 1:1 (volume ratio) mixture of Ethylene Carbonate (EC) and Diethyl Carbonate (DEC). The positive electrode consists of 85 wt.% synthesized materials, 10 wt.% LiOH \cdot H$_2$O, Ni(OH)$_2$, TiO$_2$.

![Diagram](image)

Fig. 1: Experimental procedure for LiNi$_{1-y}$Ti$_y$O$_2$ electrode prepared by solid-state reaction method after milling
acetylene black and 5 wt.% polyvinylidene fluoride (PVDF) binder solved in 1-Methyl-2-pyrrolidinone (NMP). A Whatman glass-fiber is used as a separator. The cells are assembled in argon-filled dry box and the cell type is coin-type (2016). All the electrochemical tests are performed at room temperature with a potentiostatic/galvanostatic system. The cells are cycled between 2.7 and 4.2 V at 0.1 C-rate.

Figure 1 shows experimental procedure for the LiNi_yTi₃O₈ electrodes prepared by milling and solid-state reaction method.

Results and Discussion

Figure 2 shows X-ray powder diffraction (XRD) patterns of LiNi_yTi₃O₈ (y = 0.005, 0.01, 0.025, 0.05 and 0.1) calcined at 750°C for 30 h. All the samples have only the phase with R 3̅ m structure and do not exhibit the peaks of impurity. The R 3̅ m structure is distorted in c-axis direction. This is reflected by the split of 006 and 102 peaks and of 108 and 110 peaks in the XRD patterns. The 108 and 110 peaks were split for all the samples.

It is generally known that the cation mixing is small if the intensity ratio of 003 peak to 104 peak (I₀₀₃/I₁₀₄) is large (Ohzuku et al., 1993). The value of (I₀₀₆+I₁₀₂)/I₁₀₁, called R-factor, is known to be smaller when the hexagonal ordering is high (Dahn et al., 1990). In addition, the split between 108 and 110 peaks is reported to suggest the smaller cation mixing and the better hexagonal ordering (Ohzuku et al., 1993).

Table 1 gives the lattice parameters a, c, c/a, I₀₀₃/I₁₀₄, R-factor and unit cell volume calculated from XRD patterns of LiNi_yTi₃O₈ (y = 0.005, 0.01, 0.025, 0.05 and 0.1) calcined at 750°C for 30 h. The sample with y = 0.005 has the largest I₀₀₆+I₁₀₂ and all the samples have the smallest value of R-factor.

![XRD patterns of LiNi_yTi₃O₈ (y = 0.005, 0.01, 0.025, 0.05 and 0.1) calcined at 750°C for 30 h](image)

Table 1: Data calculated from XRD patterns of LiNi_yTi₃O₈ (y = 0.005, 0.01, 0.025, 0.05 and 0.1) calcined at 750°C for 30 h

<table>
<thead>
<tr>
<th>y</th>
<th>a(Å)</th>
<th>c(Å)</th>
<th>I<sub>003</sub>/I<sub>104</sub></th>
<th>R-factor</th>
<th>Unit cell volume (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.786</td>
<td>14.178</td>
<td>1.02</td>
<td>0.59</td>
<td>101.872</td>
</tr>
<tr>
<td>0.05</td>
<td>2.880</td>
<td>14.223</td>
<td>1.12</td>
<td>0.53</td>
<td>101.320</td>
</tr>
<tr>
<td>0.025</td>
<td>2.877</td>
<td>14.195</td>
<td>1.05</td>
<td>0.56</td>
<td>102.240</td>
</tr>
<tr>
<td>0.01</td>
<td>2.877</td>
<td>14.207</td>
<td>0.98</td>
<td>0.52</td>
<td>101.843</td>
</tr>
<tr>
<td>0.005</td>
<td>2.882</td>
<td>14.239</td>
<td>1.16</td>
<td>0.50</td>
<td>102.108</td>
</tr>
</tbody>
</table>
Fig. 3: SEM photographs of LiNi$_{1-y}$Ti$_y$O$_2$ ($y = 0.005, 0.01, 0.025, 0.05$ and 0.1) calcined at 750°C for 30 h.

Figure 3 shows the SEM photographs of LiNi$_{1-y}$Ti$_y$O$_2$ ($y = 0.005, 0.01, 0.025, 0.05$ and 0.01) calcined at 750°C for 30 h. The samples contain small and large particles. The particles become larger as the value of y increases.

Figure 4 shows the variations of the discharge capacity of LiNi$_{1-y}$Ti$_y$O$_2$ ($y = 0.005, 0.01, 0.025, 0.05$ and 0.01) calcined at 750°C for 30 h. The sample with $y = 0.05$ has the largest first discharge capacity 179.8 mAh g$^{-1}$ and the discharge capacity 113.8 mAh g$^{-1}$ at the 20th cycle. The sample with $y = 0.005$ has the smallest first discharge capacity 125.4 mAh g$^{-1}$. The samples exhibit similar cycling performance.
Fig. 4: Variations of discharge capacity at 0.1 C-rate with the number of cycles for LiNi_yTi_{1-y}O₂ (y = 0.005, 0.01, 0.025, 0.05 and 0.1) calcined at 750°C for 30 h

Fig. 5: Variations of discharge capacity at 0.1 C-rate with the number of cycles for LiNi_yM_{1-y}O₂ (M = Ga, y = 0.025; M = In, y = 0.1; M = Ti, y = 0.05) calcined at 750°C for 30 h

Table 2: Data calculated from X-ray powder diffraction patterns of LiNi_yM_{1-y}O₂ (M = Ga, y = 0.025; M = In, y = 0.1; M = Ti, y = 0.05) calcined at 750°C for 30 h

<table>
<thead>
<tr>
<th>Material</th>
<th>a(Å)</th>
<th>c(Å)</th>
<th>I<sub>pow</sub>/I<sub>std</sub></th>
<th>R-factor</th>
<th>Unit cell volume (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiNi<sub>0.97</sub>Ga<sub>0.03</sub>O<sub>2</sub></td>
<td>2.883</td>
<td>14.362</td>
<td>0.92</td>
<td>0.54</td>
<td>103.380</td>
</tr>
<tr>
<td>LiNi<sub>0.9</sub>In<sub>0.1</sub>O<sub>2</sub></td>
<td>2.877</td>
<td>14.212</td>
<td>1.33</td>
<td>0.52</td>
<td>104.559</td>
</tr>
<tr>
<td>LiNi<sub>0.97</sub>Ti<sub>0.03</sub>O<sub>2</sub></td>
<td>2.880</td>
<td>14.223</td>
<td>1.12</td>
<td>0.53</td>
<td>104.320</td>
</tr>
</tbody>
</table>

In our earlier study (Kim et al., 2005 a, b), we studied the electrochemical properties of LiNi_ysGa_{1-y}O₂ and LiNi_ysIn_{1-y}O₂ synthesized by the same method, as mentioned above. Among LiNi_ysGa_{1-y}O₂ and LiNi_ysIn_{1-y}O₂, LiNi_{0.97}Ga_{0.03}O₂ and LiNi_{0.97}In_{0.03}O₂ had the best electrochemical properties. LiNi_{0.9}In_{0.1}O₂ exhibited the best electrochemical properties among LiNi_yIn_{1-y}O₂.

Figure 5 shows the variations of the discharge capacity of LiNi_yM_{1-y}O₂ (M = Ga, y = 0.025; M = In, y = 0.1; M = Ti, y = 0.05) calcined at 750°C for 30 h. The sample LiNi_{0.97}Ti_{0.03}O₂ has the largest first discharge capacity 179.8 mAh g⁻¹ and the discharge capacity 113.8 mAh g⁻¹ at the 20th
Fig. 6: X-ray powder diffraction patterns of LiNi$_{1-x}$M$_x$O$_2$ (M = Ga, y = 0.025; M = In, y = 0.1; M = Tl, y = 0.05) calcined at 750°C for 30 h.

Fig. 7: SEM photographs of LiNi$_{1-x}$M$_x$O$_2$ (M = Ga, y = 0.025; M = In, y = 0.1; M = Tl, y = 0.05) calcined at 750°C for 30 h.

The sample LiNi$_{0.95}$Ga$_{0.05}$O$_2$ has the smallest first discharge capacity 131.4 mAh g$^{-1}$, but it has the best cycling performance. LiNi$_{0.95}$Ga$_{0.05}$O$_2$ has the discharge capacity 117.5 mAh g$^{-1}$ at the 20th cycle, showing the discharge capacity degradation rate of 0.70 mAh g$^{-1}$ cycle$^{-1}$.

Figure 6 shows XRD patterns of LiNi$_{0.95}$Ga$_{0.05}$O$_2$, LiNi$_{0.95}$In$_{0.05}$O$_2$ and LiNi$_{0.95}$Tl$_{0.05}$O$_2$. All the samples have the phase with R3m structure. In addition, LiNi$_{0.95}$In$_{0.05}$O$_2$ shows the peaks for LiInO$_2$.
Table 2 gives the lattice parameters a, c, c/a, I_{200}/I_{100}, R-factor and unit cell volume calculated from XRD patterns of LiNi_{1-x}M_{x}O_{2} (M = Ga, y = 0.025; M = In, y = 0.1; M = Ti, y = 0.05). LiNi_{0.9}In_{0.1}O_{2} has the largest I_{200}/I_{100} and all the samples have the similar values of R-factor.

Figure 7 shows the SEM photographs of LiNi_{0.975}Ga_{0.025}O_{2}, LiNi_{0.9}In_{0.1}O_{2} and LiNi_{0.95}Ti_{0.05}O_{2} calcined at 750°C for 30 h. All the samples have small and large particle. The particle size increases roughly from LiNi_{0.975}Ga_{0.025}O_{2} to LiNi_{0.9}In_{0.1}O_{2} and then to LiNi_{0.95}Ti_{0.05}O_{2}. The particles of LiNi_{0.9}Ti_{0.1}O_{2} are agglomerated.

Conclusions

LiNi_{0.9}TL_{0.1}O_{2} (y = 0.005, 0.01, 0.025, 0.05 and 0.1) were synthesized by milling for 1 h, preheating at 450°C for 5 h in air, then pelletizing and finally calcining at 750°C for 30 h under oxygen stream. All the samples had the R-3m structure. LiNi_{0.9}TL_{0.1}O_{2} has the largest first discharge capacity 179.8 mAh g^{-1} and the discharge capacity 113.8 mAh g^{-1} at the 20th cycle. LiNi_{0.9}TL_{0.1}O_{2} has the smallest first discharge capacity 125.4 mAh g^{-1}. The samples exhibit similar cycling performances. LiNi_{0.975}Ga_{0.025}O_{2} and LiNi_{0.9}In_{0.1}O_{2} had the best electrochemical properties among the samples substituted by the same element, respectively. Among LiNi_{0.975}Ga_{0.025}O_{2}, LiNi_{0.9}In_{0.1}O_{2} and LiNi_{0.95}Ti_{0.05}O_{2}, LiNi_{0.95}Ti_{0.05}O_{2} has the largest first discharge capacity, but has the worst cycling performance. LiNi_{0.975}Ga_{0.025}O_{2} has the smallest discharge capacity, but has the smallest capacity degradation rate 0.70 mAh g^{-1} cycle^{-1}.

Acknowledgment

This study was supported by grant No. R01-2003-000-10325-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

References

Broussely, M., 1999. Recent developments on lithium ion batteries at SAPT. J. Power Sources, 81-82: 140-143.

Caurant, D., N. Baffier, B. Garcia, J.P. Pereira-Ramos, 1996. Synthesis by a soft chemistry route and characterization of LiNi_{1-x}Co_{x}O_{2} (0 ≤ x ≤ 1) cathode materials. Solid State Ionics, 91: 45-54.

Gao, Y., M.V. Yakovleva and W.B. Ebner, 1998. Novel LiNi_{1-x}Ti_{x}Mg_{0.075}O_{2} compounds as cathode materials for safer lithium-ion batteries. Electrochem. Solid State Lett., 1: 117-119.

Kim, J. and K. Amine, 2001. The effect of tetravalent titanium substitution in LiNi_{1-x}Ti_{x}O_{2} (0.025 ≤ x ≤ 0.2) system. Electrochem. Commun., 3: 52-55.
Shinova, E., E. Zhecheva, R. Stoyanova, G.D. Bromley, R. Alcantara and J.L. Tirado, 2005. High-pressure synthesis and electrochemical behavior of layered (1-α)LiNi$_{1-x}$Al$_x$O$_2$
αLi[Li$_{0.8}$Ni$_{0.2}$]O$_2$ oxides. J. Solid State Chem., 178: 2692-2700.