Polymer (PVP) Supported Ferric Chloride as a Heterogeneous Catalyst for Selective Deprotection of Aldoximes and Hydrazones

M. Adharvana Chari, D. Shobha, T. Kiran Kumar and K. Syamasundar
Department of Chemistry, JNTU College of Engineering, Kukatpally, Hyderabad-500072, India

Abstract: Oximes and hydrazones undergo selective deprotection to afford the corresponding carbonyl compounds in excellent yields (85-98%) and short reaction times 1.5-5.0 h using polymer (PVP) supported Ferric chloride as a heterogeneous catalyst.

Keywords: Aldoximes and hydrazones, polymer (PVP) supported ferric chloride, carbonyl compounds

INTRODUCTION

Regeneration of carbonyl compounds from oximes and hydrazones is a very important transformation in synthetic organic chemistry due to their extensive application in the protection (Greene and West, 1991) and the purification of carbonyl compounds (Chetrite and Entrikin, 1963). These carbonyl compounds served as intermediates for many reactions such as the preparation of amides via Beckman rearrangement (Donaruma and Heldt, 1966; Bosch et al., 1995). Oxime synthesis from non-carbonyl compounds (Kabalka et al., 1990a) provides an alternative pathway to aldehydes and ketones. The hydrolytic stability of oximes has inspired the development of several deamination reagents (Bandgar et al., 1996b) such as trimethylammonium chlorochromate (Bose and Srinivas, 1997c; Rao et al., 1983d) dinitrogen tetroxide (Shim and Kim, 1987a), pyridinium chlorochromate (PCC) (Maloney et al., 1978), chromium trioxide-chlorotrimethylsilane (Aizpurua et al., 1985g), clay-supported Ferricnitrate (Laszlo and Polla et al., 1985h), titanium silicate-l (Joseph et al., 1999b3), tertiary butyl hydroperoxide (Barhate et al., 1997i), N-haloamides (Bandgar et al., 19997K) and manganese triacetate (Ayhan et al., 1997L) with certain limitations. Or the regeneration of carbonyl compounds several methods are available based on hydrolytic (Donaldson et al., 1983), reductive (Curran et al., 1984) and oxidative (Bose and Srinivas, 1998a; Bose and Venkat Narasiah, 1999b, 2000cc). Many of these procedures suffer from one or the other drawbacks toxicity of the reagents, expensive transition metals long reaction time and difficulties in isolation of products (Drabowicz, 1980a; Ayhan and Tanyeli, 1997b, Bose and Srinivas, 1998c). These limitations are prompted us to investigate further new methodology for the deprotection of oximes and hydrazones using readily available and safer reagents which lead to high recovery of carbonyl compounds.

MATERIALS AND METHODS

Catalyst Preparation
Cross linked poly (4-vinylpyridine) (1 g) was dissolved in 10 ml of standard solution of 0.1M of FeCl₃ in water. After the solution had been stirred for 30 min at 30°C. The solid PVP-Fe (III) was filtered to obtain. The excessive ferric ions in complex were washed by deionized water. The solid powder was dried under vacuum at 65°C for 24 h. The absorbed amounts are ferric ions in complex were obtained using UV spectrophotometer.

Corresponding Author: M. Adharvana Chari, Department of Chemistry, JNTU College of Engineering, Kukatpally, Hyderabad-500072, India Fax: 0991-40-2850056
General Procedure

A mixture of oximes/hydrazone (5.0 mmol) and PVP supported ferric chloride (0.6 g) was dissolved in a minimum amount of dichloromethane. The reaction mixture was vigorously stirred at room temperature for specified time (Table 1). The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was allowed to reach room temperature treated with water and extracted with CH₂Cl₂ (4 × 5 mL). The combined organic phase was washed with brine, dried (Na₂SO₄) and the solvent was removed in vacuo to afford the crude product, which was purified by column chromatography on silica gel eluted with ethyl acetate-hexane (1:5).

| Table 1: Cleavage of oximes and hydrazones using polymer supported FeCl₃ |
|-----------------------------|------------------|--------|---|
| Entry | Aldoximes | Aldehydes | Time (h) | Yield (%) |
| 1 | ![Image](image1.png) | ![Image](image2.png) | 4.0 | 98 |
| 2 | ![Image](image3.png) | ![Image](image4.png) | 4.0 | 95 |
| 3 | ![Image](image5.png) | ![Image](image6.png) | 4.0 | 90 |
| 4 | ![Image](image7.png) | ![Image](image8.png) | 5.0 | 92 |
| 5 | ![Image](image9.png) | ![Image](image10.png) | 4.0 | 94 |
| 6 | ![Image](image11.png) | ![Image](image12.png) | 5.0 | 92 |
| 7 | ![Image](image13.png) | ![Image](image14.png) | 4.5 | 94 |
| 8 | ![Image](image15.png) | ![Image](image16.png) | 4.0 | 90 |
| 9 | ![Image](image17.png) | ![Image](image18.png) | 40 | 90 |
| 10 | ![Image](image19.png) | ![Image](image20.png) | 4.0 | 89 |
| 11 | ![Image](image21.png) | ![Image](image22.png) | 4.0 | 87 |
| 12 | ![Image](image23.png) | ![Image](image24.png) | 4.0 | 88 |
RESULTS AND DISCUSSION

Recently, the use of solid supported reagents (Clark, 1994; Caddick, 1995a; Borah et al., 1997b; Bose and Jayalakshmi, 1999c; Varma et al., 1997; Bose et al., 1999a; Bose and Raveendra Goud, 1999b) has received considerable importance in organic synthesis because of their ease of handling, enhanced reaction rates, greater selectivity, simple workup and recoverability of catalysts. Among the various heterogeneous catalysts, particularly, polymer supported reagents have advantages of low cost, ease of preparation and catalyst recycling. Since the reaction is heterogeneous in nature, the catalyst can conveniently be separated by simple filtration.

Herein we wish to report a facile conversion of oximes and hydrazones to corresponding carbonyl compounds using polymer supported FeCl₃ as a heterogeneous catalyst (Scheme 1).

FeCl₃ is an inexpensive and powerful oxidant used for the transformation of a wide range of functional groups. A wide range of structurally varied oximes and hydrazones have been subjected to cleavage with FeCl₃ supported on polymer to provide the corresponding carbonyl compounds it is noteworthy that unlike other oxidative hydrolytic methods. The major drawback of over oxidation of ensuing aldehydes is not observed under the reaction conditions. Interestingly the unsaturated oxime under went deamination very efficiently without effecting the C = C bond and the reaction is essentially chemo selective. Oximes and hydrazones were prepared by known literature procedures. All resulting carbonyl compounds are identified by comparisons of their physical data, IR and NMR spectra with those of authentic samples. Polymer supported FeCl₃ was prepared by using known procedure (Wu et al., 2003). The catalyst was recovered by simple filtration and reused for 3-4 times with consistent activity.
CONCLUSIONS

In summary, we have shown that the polymer supported FeCl$_3$ provides an efficient methodology for the rapid cleavage of oximes and hydrazones to regenerate carbonyl compounds. Present methodology offers very attractive features such as reduced reaction times, higher yields and economic viability of the catalyst and mild nature of FeCl$_3$ when compared with conventional methods as well as with other catalysts, which will have wide scope in organic synthesis. The simple procedure combined with ease of recovery and reuses of this catalyst make this method economic, benign and a waste-free chemical process. The operational simplicity of the procedure is also attractive. The catalyst can be prepared easily with readily available inexpensive reagents. To our knowledge, this is first time report of an efficient general method for the rapid cleavage of oximes and hydrazones by using a simple heterogenous catalyst.

All other products were characterised by spectral (NMR and IR) data and by comparison with those of authentic samples and also by the mixed melting points with the authentic samples.

ACKNOWLEDGMENT

The authors are thankful to K, M.M.S. Prakash, NIH Fellow, School of Medicine, Wayne State University, USA for his valuable discussion.

REFERENCES

83

