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Abstract: In this study, an adaptable algorithm for simulating CNN arrays is implemented
using various means such as Arithmetic Mean (AM), Centroidal Mean (CM), Harmonic
Mean (HM), Contra Harmonic Mean (CoM), Heronian Mean (HeM), Geometric Mean
(GM) and Root Mean Square (RMS). The role of the simulator is that it is capable of
performing raster simulation for any kind as well as any size of input image. It is a powerful
tool for researchers to investigate the potential applications of CNN. This study proposes
an efficient pseudo code exploiting the latency properties of Cellular Neural Networks along
with well known Runge-Kutta (RK) fourth order numerical integration algorithms.
Simulation results and comparison have also been presented to show the efficiency of the
various means in numerical integration algorithms. It is observed that the RK-Arithmetic
Mean (AM) outperforms well in comparison with other means.

Key words: Cellular neural networks, various RK-fourth order means, edge detection, raster
CNN simulation

INTRODUCTION

The distinctiveness of Cellular Neural Networks (CNNs) are analog, time-contimious, non-linear
dvnamical systems and formally belong to the class of recurrent neural networks. CNNs have been
proposed by (Chua and Yang, 1988a) and they have found that CNN has many important applications
in signal and real-time image processing. Roska (1994) and Cha and Roska (2002) has presented the
first widely used simulation system which allows the simulation of a large class of CNN and is
especially suited for image processing applications. It also includes signal processing, pattern
recognition and solving ordinary and partial differential equations etc. Explicit Euler's Algorithm and
the RK-fourth order Algorithm were discussed by Bader (1987, 1988). They have discussed about the
application problem of comparative study of new truncation error estimates and intrinsic accuracies
of some higher order RK algorithms. Also they adapted new technique for the early detection of
stiffness in coupled differential equations and application to standard RK algorithms. Oliveira (1999)
have discussed RK-Gill algorithm regarding evaluation of effectiveness of immobilized enzyme and
discussed to solve mathematical undetermination at particle center point. Lee and de Gyvez (1994)
introduced Euler, Improved Euler, Predictor-Corrector and fourth-order (quartic) RK algorithms in
time-multiplexing CNN simulation.

Bottou er af. (2001) have proposed an efficient algorithm for converting digital documents to
multilayer raster formats. Hadad and Piroozmand (2007) have described the application of a multilayer
cellular network to model and solve the nuclear reactor dynamic equations. Chen ef af. (2006) have
studied in detail about the eightimage tasks: Connected Component Detection {CCD) with down,
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right, +45 and -45° directions, edge detection, shadow projection with left and right directions and
point removal are analyzed. Aizenberg ef @/ (2001) presented a special kind of cellular neural
networks based on multiple valued threshold logic in the complex plane will be presented and its
efficacy for medical imaging will be documented.

Wazwaz (1993) has performed numerical tests for several problems of IVPs in the form of
yv' = f (%, v) using fourth order RK formulas based on a variety of means. He has concluded that the
level of accuracy in each formula adapted depends upon the error terms which mainly depend on the
nature of the function f (x, y). It is of interest to mention that no investigation has so far been
performed and the level of accuracy of each fourth order RK formulas on the problem of multilayer
raster cellular numerical network simulation. In view of this, a modest effort has been made in the
present paper to investigate the efficiency of the various RK formulas based on variety means in the
problem of multilayer raster cellular numerical network simulation.

FUNCTIONS OF CELLULAR NEURAL NETWORK

The general CNN architecture consists of MxN cells placed in a rectangular array. The basic
circuit unit of CNN is called a cell. It has linear and nonlinear circuit elements. Any cell, C (3, j), is
connected only to its neighbor cells {adjacent cells interact directly with each other). This intuitive
coneept 1s known as neighborhood and is denoted by N (4, 7). Cells not in the immediate neighborhood
have indirect effect because of the propagation effects of the dynamics of the network.

Each cell has a state x, input u and output v. For all time t=0, the state of each cell is said to be
bounded and after the transient has settled down, a cellular neural network always approaches one of
its stable equilibrium points. It implies that the circuit will not oscillate. The dynamics of a CNN has
both output feedback (A) and input control (B) mechanisms. The dynamics of a CNN network cell
is governed by the first order nonlinear differential Equation given below:

dx, () —
cﬁz—lxu(tﬁ Z A,k Dy, (0)+ Z B, jpk,Du, (1)+I, 1 <i< M;1 <j < N.
dt R ok, De ML, j) ok, 1e N, i)

and the output Equation is given by,

yu(t):%uxij(t)Jrl|7|Xij(t)71 } l<i<M;l<j<N.

Where, ¢ is a linear capacitor, x; denotes the state of cell C (i, j), x; (0) is the initial condition of
the cell, R is a linear resistor, I is an independent current source, A (i,; kv, and B (i,j; k1) u, are
voltage controlled current sources for all cells C (k, 1) in the neighborhood N (i, j) of cell C (i, j) and y;
represents the output equation.

From the Eq. 1 it is observed that the summation operators of each cell is affected by its
neighboring cells. A: represents on the output of neighboring cells and is called as feedback operator,
B: in turn affects the input control and is known as the control operator. In particular, the entry values
of matrices A and B are dependent on the application chosen by the user which are space invariant and
are referred as cloning templates. A current bias [ and cloning templates establishes the transient
behavior of the cellular nonlinear network. A contimious-time cell implementation is shown in Fig. 1b
as an equivalent block diagram. CNNs have as input a set of analog values and its programmability is
done via cloning templates. Thus, programmability is one of the most attractive properties of CNNs.
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Fig. 1. Cellular neural networks: (a) Array structure and (b) Block diagram

PERFORMANCE OF RASTER CNN SIMULATIONS

Raster CNN simulation is an image scanning-processing technique for solving the system of
difference equations of CNN. The Eq. 1 is space invariant, which means that A (i, j; k, D = A (i-k, j-D)
and B (i, j; k) =B (i-k, j-1) for all i, k1. Therefore, the solution of the system of difference equations
can be seen as a convolution process between the image and the CNN processors. The fundamental
approach is to imagine a square subimage area centered at (x, v), with the subimage being the same size
of the templates involved in the simulation. The center of this subimage is then moved from pixel to
pixel starting, say, at the top left corner and applying the A and B templates at each location (%, y) to
solve the differential equation. This procedure is repeated for each time step, for all the pixels in the
image. An instance of this image scanning-processing is referred to as iteration. The processing stops
when it 1s found that the states of all CNN processors have converged to steady-state values and the
outputs of its neighbor cells are saturated, e.g., they have ¢+l value Chua and Yang (1988a). This
whole simulating approach is referred to as raster simulation. A simplified pseudo code is presented
below gives the exact notion of this approach.

Pseudo Code for Raster CNN Simulation

Step 1: Imtially get the input image, initial conditions and templates from end user./* M, N = No.
of rows and columns of the 2D image */

while (converged-cells < total number of cells)

{

for (i=1;i<= M, i++)

for =1; j<=N; j++)

{

if (convergence-flag[i] [j])

continue; /* current cell already converged®/
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Step 2:  /*Calculate the next state®/

tntl

X () =%, (6,) + | P, )t
ta
Step 3: /* Check the convergence criteria */

dx, it
If [—éi H)J_o andy, ==L Vek ) eN,{i.j)

{
convergence-flag[i][j]=1;
converged-cellst

)
} /% end for */

Step 4: /* Update the state values of the entire image */
for (i=1;i<= M, i++)
for G=1,j<=N; j++)

{

if (convergence-flag[i][j]) continue;
Xt = %t );

}

Number of iteration++;

}

/* end while */

For simulation purposes, a discretized form of Eq. 1 is solved within each cell to simulate its state
dynamics. One common way of processing a large complex image is using a raster approach Chua and
Yang (1988b) and Chua and Roska (1992). This approach implies that each pixel of the image is
mapped onto a CNN processor. That is, it has an image processing function in the spatial domain that
is expressed as:

g (xy) = T(fxy)) (2)

Where:

g = The processed image.

f = The input image.

T = An operator on f defined over the neighborhood of (x,y).

It is an exhaustive process from the view of hardware implementation. For practical applications,
in the order of 250,000 pixels, the hardware would require a large amount of processors which would
make its implementation unfeasible. An alternative option to this scenario is multiplex the image
processing operator.

NUMERICAL INTEGRATION TECHNIQUES
The CNN is described by a system of nonlinear differential equations. Therefore, it is necessary

to discretize the differential equation for performing behavioral simulation. For computational
purposes, a normalized time differential equation describing CNN is used by Nossek er af. (1992).
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f'(x(nt))z%z—xu(m)-k Z Al ik, Dy, (nt)+

ek, 1)eN, (1)

> BikDuymo+Il <i< M1 =j <N,

ek, 1)el, (1,9
1

_ ; . 5

yym=—{ 1<j<N )

]

x;(nt)+1 ‘—‘xij {nt)-1

},lsisM-

]

Where:
T = The normalized time.

For the purpose of solving the initial-value problem, well established Single Step methods of
mumerical integration techmques are used. (Wazwaz, 1993; Yaakub and Evans, 1997). These methods
can be derived using the definition of the definite integral.

X, (n+1)1)-x, (nT)) = tnj f'(x(nt))d(nt) (©)

T

Seven types of numerical integration algorithms are used in time-multiplexing simulations. They
are Arithmetic Mean (AM), Centroidal Mean (CM), Harmonic Mean (HM), Contra Harmonic Mean
(CoM), Heronian Mean (HeM), Geometric Mean (GM), Root Mean Square (RMS) discussed in
(Wazwaz, 1993; Yaakub and Evans, 1997).

Fourth Order RK Method Based on Different Means
In Table 1 the term h represents step size and ky, k,, k; and k, can be expressed as:
k= (%, ¥,)-
k, = fixta by, tha k).
ky = f{xHaytag)h, yrhak, +hask,).
k, = f{xHa,tasta by, thak thak,+thaks).
Where, the given initial value problem is
_dy
V=g &Y
and a,, a,, a,, a,, as and a, are known constants on the type of fourth order RK-methods.

Table 1: Rank (Less Error in the order of Ascending): Fourth order RK with various means

Different means Vor =
h
AM yn+g[k1+2(k2+k3)+k4]
oM y L 2h kf+klk2+k§+k§+k2k3+k§+k§+k3k4+ki]
9 k +k, k, +k, k,+k,
M g 2 kk | kko kK
3 k+k, k+k k+k,
oM g B K
T3k +k, ky+ky ki +k,
h
HeM yn+§[k1+2(k2+k3)+k4+‘ﬂklk2|+\ﬂk2k3\+\ﬂk3k4|]
h
GM yn+_['J|k1k2‘+\l‘k2kz‘+\/‘k3k4|]
3
2 2 2 2 2 2
RMS yn+2[‘jk1+k2 +Jk2+k3+\jk3+k4]
3 2 2 2
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SIMULATION RESULTS AND COMPARISONS

&1 the sirmulated outputs presented below here are perfonmed using a high power workstation
arid the sirolation tivne nsed for coraparisons is the actual CPU tire nsed. The ingmt irnage formatis
the X windows bitnap forenat (xhe), which is coremonl yavaildble and easily cormertible from popular
inage formats like GIF or JPEG. Figure Zh, b, dh, 5b, éb Th and 2b show the results of the raster
sitnulator obfained from a complex image of 1, 25,600 pixels.

Anthretic Iean (AN, Centioida] Mean (ChvD), Hamrnone e an (HI), Contra Harmome bean
(Cold), Heronian Ivkan (Held),Geometric Mean (Gl and Foot Ilean Sguare (BWE) the results
of the raster siramlator obtaired fror a complex mage of 1, 25600 pixels are depicted, respectively

(2l i

Fiz. 2: {a) Original Lena [mage and (b) After sveraging and edge detection teraplates by ermploying
BE-faithrnetic mean alzorithn

(2] i
Fiz. 3: {a) Original Lena [mage and (b) After averaging and edge detection teraplates by mploving
BRI -centroidal mean alz orifton
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(a) (k)

Fig. 4 (@) Criginal Lena Image and (b) After averaging and edge detection templates by emploving
RE-harmonic mean algorithim

(a) LY

Fig. 5: (2) Oniginal Lena Itnage and (b) ARer averaging and edge detection templates by employing
K-contra-harmonic mean algorithim

(a) (k)

Fig. & (a) Cnginal Lena Image and (b) After averaging and edge detection templates by emnploying
RE-heronian mean algorithin
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@ ®)

Fig. 7. (a) Original Lena Image and (b) After averaging and edge detection templates by emploving
RE-peometric mean algorithm

(a) )]
Fig. & (2) Original Lena Image and (b) After averaging and edge detection templates by emploving
RE-root mean square algorithin

in Fig. 2-8 For the present example an averaging template followed by an Edge Detection
(Gonzalez er «l, 2005) template were applied to the original image to vield the images dizplaved in
Fig. 2b. The same procedure has been adapted for getting the results shownin Fig. 3b, 4b, 5b, 6b,7b
and 8b. It iz obzerved from Fig. 2b, 3b, 4b, 5b, 6b, 7b and &b that the edges obtained by the
Arithmetic Mean (AM) is better than that obtained by the Centroidal Mean (CM), Harmonic Mean
(HM), Contra Harmonic Mean (CoM), Heronian Mean (HeM), Geometric Mean (GM) and Root
Mean Square (RM3).

As zpeed iz one of the major concerns in the sitnulation determining the maximum step size that
still yields convergence for a tetnplate can be helpful in speeding up the system. The speed-up can be
achieved by selecting an approptiate (At) for that particular template. Even though the maximum step
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Edge detection Averaging Conected
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Step size (AD
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<

1.5
1.0
0.54
0.0+
2 3
Three different templates

Fig. 9: Maximum step size (At) yields the convergence for three different templates

40 —4—RK-Root mean square —li— RK-Geometric mean

35 —dr—RK-Heronian mean ~ —%— REK-Conta-harmonic mean
—w—RK-Harmonic mean —¢— RK-Centroidal mean

30 ——RK-Atithmetic mean

Simulation time {(sec)

Step size (A1)

Fig. 10: Comparison of seven numerical integration techniques using the averaging template

size may slightly vary from one image to another, the values in Fig. 9 show a comparison between
three different templates. It is observed from Fig. 9 that RK-Arithmetic Mean allows us to sclect a
maximum step size as compared to other two methods irrespective of the selection of templates. These
results were obtained by trial and error over more than 100 simulations on a Lena image.

It is observed from Fig. 9 that RK-Arithmetic Mean allows us to select a maximum step-size (At)
as compared to other six methods irrespective of the selection of templates. Fig. 10 show that the
significance of selecting an appropriate time step-size (At). If the step-size (At) is chosen is too small,
it might take many iterations, hence longer time, to achieve convergence. But, on the other hand, if the
step-size (At) taken is too large, it might not converge at all or it would be converges to erroneous
steady state values. The results of Fig. 10 were obtained by simulating a small image of size 256x256
pixels using Averaging template on a Lena image.

CONCLUSION

The attention of the present article is focused on different numerical integration algorithms
involved in the raster CNN simulation. The significance of the simulator is capable of performing raster
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simulation for any kind as well as any size of input image. It is a powerful tool for researchers to
investigate the potential applications of CNN. In this paper an averaging template followed by edge
detection template were applied to the original image to yield the required output image and it may be
true for most of the edge detection approaches but these edge detection approaches vary in processing
time due to their hardware limitations and the simulator chosen. It is pertinent to pin-point out here
that the RK-Arithmetic Mean guarantees the accuracy of the detected edges and greatly reduces the
impact of random noise on the detection results in comparison with other Means. It is of interest to
mention that using RK-Arithmetic Mean; the edges of the output images are proved to be feasible and
effective by theoretic analysis and simulation.
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