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ABSTRACT

In this research, we have studied the use of splines to solve lacunary interpolation problem
analytically and applied to the solution of initial and boundary value problems. The analytical
results of this model have been obtained in terms of convergent series with the theorems for errors
estimation. Among a number of numerical methods used to solve differential equations spline

methods provide an efficient tool.
Key words: Spline interpolation, boundary conditions, errors estimation, differential equations

INTRODUCTION

The given method approximates not only the solution function of the differential equations but
also the convergence and errors estimation analytically. The order of the approximation coincides
with that of the best possible polynomial approximation.

Many lacunary interpolation methods are used to approximate a solution of initial and
boundary value problems to solve various scientific models (Al-Bayati ef «l., 2009; Bronson, 1973;
Howell and Varma, 1989).

We study the convergence properties of a spline density estimate of the type intreduced by
Howell and Varma (1989) and discussed by Siddiqi et al. (2007). Many class of spline interpolation
have been implemented to solve the differential equations numerically such as existence and
uniqueness lacunary interpolations Al-Bayati ef al. (2009) and interpolation by six and seven
degree spline by Salh (2010), Fara) (2010} and Siddiqi ef al. (2007), respectively. Also we are
interested in the convergence analysis by two theorems to find the smallest errors bound various
with problems. The method can be used to evaluate the approximating solution by the finite Taylor
series and shooting procedure described by the transformed equations obtained from the original

spline interpolations.

CONSTRUCTION SPLINE MODEL
We present a seven degree spline interpolation polynemial with given sufficiently smooth

funetion f(x) defined on I = [0, 1] and the mesh point of the uniform partition of I as:
A= x < << . <x, = 1
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With the knot x, = ih+x,, where 1=0, 1, 2,..., n-1 and h is the distance of each subintervals. The

seventh degree spline interpolation is defined:

(X_XEI)2 yg + (X_Xu)3

9l Y ygjj +(X_XEI )ﬁ Ay + (X_Xu)Tam

yﬂ + (X_XEI)4aEI4 +

8,00 =Y+ (-0, + Gony

On the subinterval, [x,, x,] where a, =4, 8, 7 are unknowns to be determined and on [x,, x/],
1=1, 2,..., n-1 be define the expression, for 5,(x) as Al-Bayati ef al. (2009):

(x—x) (x—x)
2! 5

v+ (x-x e, (x-x ) e, + v x-x P+ (x-x) 8

i

S(x)=y +(x=-x)a, +

where, a;, 1,n-1,7=1, 3, 4, 6, 7 are unknowns values we need to determine it.

1i?

On the end of the interval [x _,, x, ] must be as the same of the first interval:
N h’ (1)
S (x)=y, +hy, + St h'a,, + Ey? +h%a, +h'a,

And the boundary conditions:

S,(x)=y,, 5, (x)=y" and SO (x,) =y (2)
Slu {(x)=a, and Su (x,)=6a, (3)

IMPLEMENTATION OF THE METHOD

In this section, we study the convergence analysis of the method developed in Section 2. For
this purpose we first let y(x)eC[0, 1]. Thus we can write the following:

Applied the conditions in Eq. 2 with using Kq. 1, we obtain:

1 2
= M[Y@ - YESJ | (4)

7h

a‘IZI?

and:

1. 1 2 1
¥, —Val- [y +9y5” (5)

By =—— e A R
" 18h? 18t 2" 3n ™ 1080h

By substituting Kq. 4 and 5in Eq. 1, we get.

21 21 1

. g8 . h
:ﬁ[% 7Yu] P

[5y, +58Y, 1 -—¥,

ey ——— T 2y 15y (6)
10" 66k’ 13h 3960[ v ¥

aD4

Substitute Eq. 6 in Eq. 5, we obtain:
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14

= _—[Y1 - yu]

T [5y57 +23y87] (N

— Iy + 5l —

aElﬁ

11h5 TR 66h* 66h3 ¥o - 3960h

Substitute Kq. 7in Eq. 4, we get:

4

o EREEE )

[¥,—¥:1- [3 + 5y, 1-

Ay =

4 1
110 " 330’ 33}14 ErTRRN 39:.*30}12

By substituting a,,, ag and a; in Kq. 1 and using the initial condition Kq. 3, we get.:

17 h . ' h? g
== iy e ey 13y ] - O oy (@)
a4, llh[ L= Yol HYU 33[ ¥ Yul 23 Yo 3960[Y

56 56 h? 10
a”:_llhz [Y1_yn]+ llhz Yot [25y1+59yu]+ YU 3960 (5) ISYESJ] ( )

Apply the spline funetion in Eq. 1, with the condition in Eq. 2 on the interval [x, x.,], where,
i=1, 2,.., n-1 we have:

V.. =Y, +ha, + h—;y1 +h’a, +h'a, + lh—jyf” +h'a, +h'a, (11)
¥i,, =¥, + 6ha, +12ha, + hgyf” +30h%a, + 42h’a,, (12)
v =y + 720ha,, + 2520ha,, (13)
8.(X,)=Vi, =8, =4, + hy, + 3h’a, + 4h’a,, + %yf) +6h’a, + 7h'a, (14)
S:‘(XM) = y:'+1 a,,=6a;,+ 24ha,, + h—;yfj) + 120h3a‘6 + 210h‘1a17 (1 5)
From Eq. 13, we get:
% oo 0 301 (18)

Substitute Kq. 16 in Eq. 12, we get:

L a1+ 9y a7

1 .
a, =—— —a, —1a
i6 18n° [y1+1 1] 3 i3 31 i4 10800

Put a,in Eq. 11, we get:
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21 21 16
a,=——[y.,, -V, ]-—a,——a 5y, + 58y, ]+ 2y% — 15y (18)
T R Al et T 6b,hg[ You + 58y 1+ 60[ Vi —15y17]
Substitute Eq. 18 in Eq. 17, we get.
7 .
a, = L 7 : e (19
i 11h5 — ¥ Vil th ay + 11hE A 66h4[ Vi +35¥, i ¥i']
Substitute Kq. 19 in Eq. 16, we get:
. A2 el sy (20)
7 = llhT — ¥, ¥ ETRALEETT LA 33h5 [V 3] h;[ Vg +3¥7]
By substituting a,,, a,; and a;; in Eq. 14, we get:
28 h . 17
a., =—1 v, —v.]+—[4 13 —a ) _ 2y
s = e = Vil + 314V —13y] -, -, — 2y"]
By substituting a,,, a,; and a;; in Eq. 14, we get:
56 17
a + 25y, + 59y, ]+ ——1 ——[13y — 159"
3 = th LN 3300L Vi + 59%.] T 3 60[ Yiu —15Y7]

Also for the interval [x,, x.], clearly by the same process of the first interval.

Lemma 1: Let yeCT[0, 1], then |ey | <h*CW.(h, ), wherei=1, 2,..., n-1 and e,-y"(x) depend on the
number of the intervals.

Proof: Let |e; | = |a,-y,,1f1=1, then from Kq. 12, we have:

ley Hay, — Y1‘ ‘1980%(&1) YD( )= 7920 ( 2 u( Jl= [YD(G) yu(e Moy <oy, 0 0 < X

and:

X, <9,.0; <x;
6

h
—ley, \< o s (h.y)=le, [<h°C, W, (h.y)

Where:
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If1=2, then:
. 17 . h? h°
‘BEI ‘=|a21_y2 ‘=_ﬁ[a11_y1]__[6313 Y1]+ W(hy)
17 4 s hﬁ
=——h"W.(h, + hW h, + W h
p— 7 (h,y) h,y) (h,y)
3|821|< hW( .Y)
ey = h602W7 (h.y)
Where:
35
5808

By the same way, we can find, C, be show that the inequality:
leg | <h*CW. (h, y), fori=1,2,.., n-1

Lemma 2: Let yeC'[0, 1], then ley|<h* C'W.(h, ), for 1 = 1, 2,..., n-1 and e,; = 6a,-y,"(x), C'
depends on the numbers of the intervals,

Proof: |eg; = |8a,.-y,"|,ifi =1, then:
®="1es " R CI R h“yé”( )+ h“y‘”(aa) “’( 4)7 h[y“’(e) vs (8:)]

Where:

x, <6, < x, e, |<h'C'W, (h,y)

Where: «_ 2L | Ifi =2, then:
' 440

28 107 2597
|y [Hl 6a, — ¥, |57h4w7(h,Y)+ 20 7(11 )+7h W, (h, )7 h W, (h,y)

=le;, |< h W, (h,y) =ley, [ h'C W, (hy)

Where:  _23%7 | By the same way, we can find, C', can be show that the inequality:
4840

le,| <h*C'W.(h, y), fori=1,2,.,n-1

Theorem 1: Let yeC7[0, 1], and S(x) be a unique of degree seven which a sclution of the preblem

1, then for the interval [x,, x,] the following errors bound are hold:
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23 W, thyyifr=0
11
32
LW () ifr =1

39
ZhW(hy),ifr=2
22 5 (hy)

AT oW, (h,yifr =3
570y e | 8

21, .
W (hy)ifr =4
440 5 (h,y)
T ww {h,v)ifr=5
13z ARYAEE
1 )
—h*W.(hy)ifr=6
660 (L y)

109

h'W. (hv)ift=7
55440 (@3

where, W.(h,y) denotes the modules of continuity of the maximum and seventh derivative of y(x).

Proof: Let xe [x,, x,] with using the Taylor series and take the seventh derivative in Eq. 11, we
have 5,7(x,,,) = 5040a,,:

18760 - 37 () H ¥ — 5040a,, |

Ty _

4 14 21
=|y ﬁyE”(Xl)+ ﬁyﬁ’(xg)—ﬁyé”(xa)\

25 25
STl 177 8,) -y (8,) TR (h.y)

218000 -y (0 W (hy)

Also using the Taylor expansion of the function and take the sixth derivative in kq. 11, we
have:

S9(x,,,) = 720a, + 5040ha,,
1S9 (x) -y (x) | ¥ 720, — 5040ha, |

32
ST Y70,y (8,)]

1800 -y (0l T, hy)
Take the fifth derivative in Eq. 11, we have 5.%(x,,,) = 720a,,+2520h%a,:
39 39
27 (x) -y (0 Ehz DAMCHR A CATE Ehzwv (h.y)
Take the fourth derivative in equation, we have:
15769 -y 001 S H W (hy)

Take the third derivative in Eq. 11, we have: S, = 6a,:
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" 21 21 " 21
SO -y ()= —h* | y"0) - v (0, ) E—h'"W. (h, v) 2| S, (x)— ¥ ()| —h*W, (h,
500 Y 00 e [¥740) -y 0,0 W, (1,3) 215,00 (0 W, ()

Take the second derivative in Eq. 11, we have:
. . 7,
=18 (0)-y ) S hW (hy)
Take the first derivative in Kq. 11, we have: 5, =a;:

15,003 G = h 5,00~ (0 = 1W, ()

: } 1
=18, (X) -y (%) | —h*W, (h,
|8, (0)—y ()] 660 (L, y)

by the same way, we obtain:

109
55440

=15 (0-y)= h'W, (hy)

Theorem 2: Let yeC'[x,,, x] and the approximate spline function can be find the error bound as:

1

11w h,y),ifr=0
32
ﬁhl{hwy(h,y),ifrzl
89, .
W, (h, y),ifr =2
> ;(h,y)

h3
S H W () =3

) 70
[P =y =,

h .
gHmW? (h,y)ifr=4

7
—h’W, (h,y),ifr=5
33 HURY

[
— H. W, (hLy)ifr=6
2640 s L (L)

109

WW (hy)ift=7
55440 1(y)

Proof: From the last derivative of the spline model, we have:

1877 (x) v (x) |H 50402, — ¥ (x)]
20160
11

1680 _, 25
=187 (x0) -y (0 < TC‘W? {h, )+ C; W, (h.y)+ 1 W;(h,y)
= 1—11[1680(:; + 20160C,; + 25]W, (h,y)
1
= HH11W7 (h.y)

1
=87 (x) -y ()= 1 W (hy)
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where, H,, = 1880C" +20160C,+25.
For sixth derivative, we have:

3z 10080 840
=89 (0 — v (x) | = h W, (h, v) + A )t
87 G-y O H AW (L y) = a0+ s
32 10080 840 .
=W, (v |+ a4 . —6a,
|11 5 (L y)| |11h5 (v —ay)| Iuhg(Y. i)
= Z2R[W, (h.y)+ 315C, W ch y) + o CW, ()]
() ® 3z
ISP 00—y P ) [ hH, Wy thy)
Where:
H21:1+315C1+£C;
4
For fifth derivative, we have:
5 ® 89 .-
=187 () -y (0 [ hW, (hy)
For fourth derivative, we have:
SIS0y G0 e = e - W, hy)

3

h ‘
= [30504C, +1224C, + 47]W, (h. )

I’ I’
BT () =187 (x) - y* (x)]= PP (h,y)

where, H,, = 30504C,+1224C" +47.
For third derivative, we have:

. h*
=I5 (0 -y ()] %Haiwv M. y)

where, H, = 2688C,+136C" +19.
For second derivative, we have:

. . 7,
28, (x) -y (%)< Eh W (h,y)
For the first derivative, we have:

[

, ‘ h
=8 (x)- <——H, W.(h,
|S.00=y ([ 5= Hy Wy (hy)

40

(Y, —6a,)
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where H, =4080C,+120C"+29 and.:

109

h'W, (h,
55440 @3

IS 00-y(x) <

Proof is completed.

NUMERICAL RESULTS

Consider two examples of initial and boundary wvalue problems are obtained an
approximate numerical solution in the first with using Taylor's expansion method and in the
second example we use shooting method are referred by Bronson (1873), Jain et al. (2007, Omar
(2005) and Russel and Shampine (2007). The problems are tested to the efficiency of the
development solutions and to demonstrate its convergence computationally. Based on the
numerical results, it can be concluded that most cases the execution the number of steps for solving
the given problems at all tolerance (Table 1, 2).

The absolute of maximum error with respect to derivatives defined as Conte (1980).

AMAXEY=max

1€i=n

el = max sV (x,) - ¥V (x,)

1=i4n

where, j = 1, 3, 4, 5, 6, 7, be order of derivatives on whole intervals and y{(x) is the exact
solution.

Problem 1: Consider the initial value problem:

& s} ‘ "
Ty =0 Y=Y (0)=0.y0)=1

Problem 2: Consider the boundary value problem:

2

d
dX52(=1+ v, y(0)=0,y()=e—1

Table 1: Absolute maximum error for S(x) and its derivative with different values of tolerance for the problem 1

TOL AMAXE® AMAXE® AMAXE® AMAXE® AMAXE® AMAXE®
107t 9.92x10712 5.55%107® 3.47<10°° 14.01%107% 4. 23%1073 5.833x107¢
102 3.46%10718 5.658x10713 3.415x1071° 1.013x1072 4.35%1071 5.78x1072
1073 0 3.335%107142 1.07%10738 9.091x1072 9.09x107? 1.86x10"

TOL: Tolerance, AMAXE: Absolute of the maximum error with respect to derivatives

Tahle 2: Absolute masimum error for and its derivative with different values of tolerance for the problem 2

TOL AMAXE™ AMAXE® AMAXE™ AMAXE® AMAXE® AMAXE™
0.5 3.76%107* 1.92x10°° 2.400x107* 9.55x107t 2.208x107% 3.239x107!
107t 377107t 6.168=107° 3.855%1077 2.21x107% 8.327<107¢ 6481072
102 3.774x107* 1.01x107° 3441077 2.21x107t 3.17x10°2 5.623 x10°

TOL: Tolerance, AMAXE: Absolute of the maximum error with respect to derivatives
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CONCLUSION

We have considered the performance of a new spline interpolation consist of degree seven with
the new boundary conditions for function, second and fifth derivatives are known on the mid
interval for solving initial and boundary value problems using variable step size and order. The
developed seventh spline method has shown the efficiency by solving higher order OSEs and the

convergence results obtained are very encouraging better than the existing spline as Salh (2010),
Faraj (2010) and Siddiqi ef al. (2007).
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