Asian Journal of Plant Sciences

ISSN 1682-3974

science alert

ANSI.net
an open access publisher
http://ansinet.com
Variatel Performance of Wheat (*Triticum aestivum*) Against Wheat Aphid (* Macrosiphum miscanthi*) and its Chemical Control with Different Doses of Insecticides

Said Mir Khan and Rashid Maqbool
Department of Entomology, Faculty of Agriculture, Gomal University, D. I. Khan, Pakistan

Abstract: The effectiveness of three different tested insecticides and their doses against aphids on wheat showed that Tamaron gave highest reduction in the aphid population followed by Thiodin and Cypermethrin (Ripcord). All of the tested insecticides were found significantly different to control in term of reduction in aphid population and in increase of yield of wheat.

Key words: Wheat, control, aphid, yield

Introduction
Wheat (*Triticum aestivum*) is one of the most important cereal crop and the staple food through out the world including Pakistan. It is extensively grown both in irrigated and rainfed areas around the world. A lot of efforts have been made in the country to develop high-yielding wheat varieties. These varieties have replaced the traditional varieties. Due to the introduction of new varieties and use of insecticides, especially in cotton growing areas, several species of aphids have become more prevalent in some areas. Among these wheat aphid (*Macrosiphum miscanthi*), bird cherry aphids (*Rhopalosiphum padi*) and English grain aphid (*Sitopion avenae*) are more common. The aphids initiate feeding at the base of the leaves near the top of the plant. As the colony develops, the leaf edges begin to roll inward, enclosing the aphids in tubular, protective structure. This protection makes the aphid un accessible to natural enemies and insecticidal spray. As a result of salivary toxins injection by the aphid, plants become purplish and develop longitudinal and whitish streaks on leave. The damage is particularly severe in cold and cloudy weather during winter. They mostly appear from December to January, Tdan and Milevoj (1999) reported that aphid caused 10 to 50% reduction in crop yield directly and 20 to 80% indirectly.

Dahams et al. (1985) tested Denton, Wichita, Chinese and Russian wheat varieties in southern plains areas of Oklahoma. Denton was found less preferred by the aphids and less susceptible to the attack of aphid as compared to the other varieties. Atkins and Dahams (1991) screened 10 wheat varieties in the field against aphid population. The late sow variety Marquis, Ceres, Thatcher, Ribal and Mida were found resistant to the attack of aphids. Bayles and Clark (1991) evaluated in field trials the relative susceptibility of 15 cultivars of speltm (*Triticum durum*) 16 cultivars of Einkorn (*Triticum monococcum*) and 13 cultivars of Khapli (*Triticum Dicoccum*) against wheat aphid in United States. Minimum aphid infestation was reported in Einkorn and maximum in the speltm.

Sing and Sircar (1983) evaluated the toxicity of insecticide against different species of aphid. The most toxic compound against Aphid *crassivora*, *Brachyoryne brassicae*, *Dactyesotus earthami*, *Lipaphis erysimi*, *Myzus persicae* and *Macrosiphum miscanthi*, were Phorate, Dimethoate, Carbaryl and Endosulfan. Lindane and Phidan were also found effective against aphid and relatively safe against *Coccomella septempunctata*. Karishniah and Mohan (1983) conducted an experiment on control of wheat aphid and observed that the population of aphid on wheat was in considerable number after third spray of Quinalphos, Matidomiphos in November. Chloropyriphos (0.5 kg ha⁻¹). Monocrotophos (both at 0.3 and 0.5 kg ha⁻¹) Endosulfan (0.7 kg ha⁻¹) gave effective control and suppressed the population after fourth spray of spray. Performance of Monocrotophos at 0.3 kg ha⁻¹ and Phospasimion, Phenthoate, Methomyl (0.5 kg ha⁻¹) were found equally effective. Chlorofenvfenphos, Aspionate, Malathion, Fenetrothion, Trichlorphon, Garlic oil, Carbaryl and Dicrotophos also provided control of this pest. Gandhale et al. (1983) used Endosulfan, Quinaophos, Fenetrothion, Phosalone and Malathion at 0.05%, Formothion and Thiometon at 0.02% against *Macrosiphum miscanthi* in field trials in Maharashtra, India in 1976-78. The highest mortality was caused by Thiometon (77.28%), while Malathion was found least effective (62.48% mortality). The aphids mortalities in the remaining treatments were ranged from 7.50 to 76.57%. Tewari and Moorthy (1983) conducted field plot tests in India in 1982-83 to determine the effectiveness of sprays of 10 insecticides in the Aphid control and to note their effects on the predator *Menonchys sexmaculatus*. On the basis of effectiveness against the aphid and low toxicity to the predator, they recommended Endosulfan, Metasystox and Dimethoate a dose of 700 g acre⁻¹. Cypermethrin, Fenvalerate, Permethrin, Deltamethrin, Malathion and Carbaryl were found less toxic to the aphid. Shafique (1984) used different insecticides for the control of aphid on wheat. He found maximum mortality in plot treated with Tamaran 96 EC (96%) followed by Inexiot 60 EC (78%). Lannate 20 EC (60%) and Dimecron 100 EC (51%) after 24 hours of spray. After 96 hours of spray Tamaran, Dimecron, Inexiot and Lannate gave 87, 78, 76 and 95% mortality, respectively. Dimecron and Tamaran gave 77% and 60% mortality of aphid after one and two weeks respectively. Maximum yield was obtained in the plots treated with Dimecron (746 kg ha⁻¹) followed by Tamaran (725 kg), Inexiot (710 kg), Lannate (620 kg) as compared to 325 kg in the check point.

Lal (1992) conducted an experiment to test the efficacy of various insecticides against aphids. According to him, Endosulfan at 500 g ha⁻¹ gave the most effective control, followed by Phosalone, Cypermethrin at 10 g ha⁻¹. Deltamethrin at 10 g ha⁻¹ also provided good control of this pests. Malathion at 1000 g ha⁻¹ and Carbaryl 2000 g ha⁻¹ were found less effective. Sipes (1999) applied different insecticides to reduce the aphid infestation on wheat in Sudan. Difenthiuron (as Polo) and Chlorpyrifos + Endosulfan were applied in December 1997. Difenthiuron gave excellent long-lasting control of wheat aphid (*Macrosiphum miscanthi*) as compared to Chlorpyrifos + Endosulfan. Reddy et al. (1999) tested dust formulation of Methyl parathion, Fenitrothion, Quinaphos, Endosulfan, Carbaryl, Delta methrin, permethrin Cypermethrin, Malathions and pirimicarb against wheat aphid (*Macrosiphum miscanthi*). Pirimicarb, Cypermethrin, Endosulfan, Carbaryl gave 95% mortality and other gave satisfactory (79%) aphid mortality.

Keeping in view the importance of the crop and its substantial loss by wheat aphids, a project was initiated with the objective: To evaluate the performance of different varieties of wheat (*Triticum aestivum*) and to determine the most effective insecticide and its dose against wheat aphids.

Materials and Methods
Two experiments viz. varietal trial and chemical control were conducted at the experimental farm of Faculty of agriculture, Gomal university, D.I. Khan during 1999 – 2000 to determine the performance of wheat varieties against aphid attack and to find out the most effective insecticide against this pest.

Variatel trial experiment: The experiment was laid out in Randomized Complete Block design. The following wheat varieties were selected for their performance against the pest, Bakhtawar, MH-97, Daman 98, Pirbak 91 and Suleman. The seeds were sown on November 15, 1999 in the plots measuring 2 x 3 m² in tar wattar condition. Row to row distance was kept 30 cm. This trial was not treated with any insecticide. All agronomic practices were equally applied in all of the treatments. The data was recorded on the basis of number of aphid leaf⁻¹. For this purpose 10 plants were selected in each sub plot randomly. Number of aphids were counted on three leaves which was selected at bottom middle and top of each plant and mean of counts was recorded.

Chemical control: The chemical control trial was conducted in two factors factorial design. The following insecticides were used (Table 1). Wheat variety 'Inqilab' was sown in the same way as described above. Treatment of insecticide was given when the number of aphids reached to economic threshold level i.e., (10 aphid leaf⁻¹). Insecticides were sprayed with the help of knapsack sprayer. Data were recorded after 24, 48,
72 hrs and one week of treatments. The data of treated plots were compared with that of control plots. The crop was harvested in April 2000 in morning time. Plants of each subplot was tied separately and respective tags were attach to them. The cost benefit ratio was determined, on the basis of yields achieved in each treated and untreated plots.

Results and Discussion

Performance of wheat varieties against aphid: The results in (Table 2) indicated that different varieties were found statistically non-significant to each other. Maximum aphid infestation was recorded in MH-97 while minimum infestation was recorded in Bakhtawar. The results revealed that none of the varieties was found resistant to the attack of aphids, however the aphid attack was less in Bakhtawar as compared to other tested varieties.

Table 2: Average number of aphid per leaf on different wheat varieties

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Mean of aphid leaf⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakhtawar</td>
<td>338.35</td>
</tr>
<tr>
<td>Suleman</td>
<td>357.76</td>
</tr>
<tr>
<td>Daman</td>
<td>362.33</td>
</tr>
<tr>
<td>Pirbak 91</td>
<td>352.33</td>
</tr>
<tr>
<td>MH-97</td>
<td>397.00</td>
</tr>
</tbody>
</table>

Table 3: Number of aphids leaf⁻¹ recorded after different duration of insecticidal treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Duration in days</th>
<th>Dose</th>
<th>One</th>
<th>Two</th>
<th>Three</th>
<th>Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiodan 35 EC</td>
<td></td>
<td>D₁</td>
<td>9.86B</td>
<td>9.63B</td>
<td>5.26B</td>
<td>8.40B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₂</td>
<td>10.16B</td>
<td>5.80BCD</td>
<td>5.86B</td>
<td>10.40B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₃</td>
<td>9.20B</td>
<td>5.13B</td>
<td>5.06B</td>
<td>5.80B</td>
</tr>
<tr>
<td>Ripcord 10 EC</td>
<td></td>
<td>D₁</td>
<td>9.50B</td>
<td>6.60B</td>
<td>5.86B</td>
<td>8.50B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₂</td>
<td>8.60B</td>
<td>8.30B</td>
<td>8.1BCD</td>
<td>8.30B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₃</td>
<td>9.00B</td>
<td>4.70CD</td>
<td>4.90B</td>
<td>7.10B</td>
</tr>
<tr>
<td>Tamaron 600SL</td>
<td></td>
<td>D₁</td>
<td>6.45B</td>
<td>5.30B</td>
<td>5.13B</td>
<td>7.10B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₂</td>
<td>6.00B</td>
<td>2.10D</td>
<td>3.96B</td>
<td>6.40B</td>
</tr>
</tbody>
</table>

Means followed by same letters are non-significantly different from each other at 5% level of probability.

Table 4: Yield (kg plot⁻¹) data of wheat crop in treated and untreated plots

<table>
<thead>
<tr>
<th>Treatment</th>
<th>D₁</th>
<th>D₂</th>
<th>D₃</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiodan 35 EC</td>
<td>2.25ABC</td>
<td>2.5AB</td>
<td>2.25ABC</td>
<td>2.33AB</td>
</tr>
<tr>
<td>Ripcord 10 EC</td>
<td>2.5AB</td>
<td>1.8ABCD</td>
<td>1.91ABCD</td>
<td>2.07AB</td>
</tr>
<tr>
<td>Tamaron 600SL</td>
<td>2.5AB</td>
<td>2.9A</td>
<td>2.41BCD</td>
<td>2.60A</td>
</tr>
<tr>
<td>Control</td>
<td>0.983D</td>
<td>1.33CD</td>
<td>1.58BCD</td>
<td>1.29B</td>
</tr>
<tr>
<td>Mean</td>
<td>2.053A</td>
<td>2.14A</td>
<td>2.04A</td>
<td></td>
</tr>
</tbody>
</table>

Means followed by same letters are non-significantly different from each other at 5% level of probability.

Table 5: Cost benefit ratio of different treatments

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Output (Rs ha⁻¹)</th>
<th>Cost benefit ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiodan 35 EC</td>
<td>4333.33</td>
<td>1:2.00</td>
</tr>
<tr>
<td>Ripcord 10 EC</td>
<td>3883.34</td>
<td>1:1.80</td>
</tr>
<tr>
<td>Control</td>
<td>3450.00</td>
<td>1:1.60</td>
</tr>
<tr>
<td>Tamaron 600SL</td>
<td>2150.00</td>
<td></td>
</tr>
</tbody>
</table>

Number of aphid/leaf on wheat after one day of spray: The data (Table 3) recorded after one day of spray of Thiodan 35EC, Ripcord 10EC and Tamaron 600SL shows that 9.86, 9.13 and 9.50 aphid/leaf were present respectively at low dose. 10.16, 9.50, 6.45 aphid/leaf were recorded at medium dose and 9.20, 8.60 and 6.00 aphids/leaf were recorded at high dose in the plots treated with the above mentioned insecticides respectively, whereas the average number of 19.80 aphids/leaf were recorded in control check plots. The data reveal that Tamaron was found most effective in the reduction of pest population at low, medium and high dose followed by Ripcord and Thiodan. All of the tested insecticides and their doses were found non-significantly different from each other at 5% level of probability in the control of aphid population on wheat plants. All of the tested insecticides were found significantly effective compared to control plots in the reduction of pest population. As for as doses are concerned all of three doses of insecticides were found non-significantly different in the control of pest.

Number of aphid leaf⁻¹ on wheat after two days of spray: The result recorded after two days of spray reveal that aphid population leaf were reduced to 9.63, 7.33, 4.70 at low dose; 5.8, 6.8 and 5.3 at medium dose and 5.36, 6.3 and 2.1 at high dose, in Thiodan, Ripcord and Tamaron treated plots respectively. Whereas the average number of 17.23 aphids/leaf were recorded in control check plots (Table 3). The data showed that Tamaron at low, medium and high doses was found significantly most effective followed by Thiodan and Ripcord. Ripcord and Thiodan were found non-significant to each other at 5% level of probability in the control of aphid population. All of the tested insecticides were found significantly effective compared to control plots. All of three tested doses of the insecticides were also found non-significantly different in the reduction of pest population.

Number of aphid leaf⁻¹ on wheat after three days of spray: The data (Table 3) obtained after three days of spray of Thiodan 35EC, Ripcord 10EC and Tamaron 600SL shows that the aphids/plant were drop to 5.26, 5.86 and 4.9 respectively at low dose. 5.36, 5.53 and 3.56 aphids/leaf at medium dose and 5.06, 8.2, 3.96 aphids/leaf at high dose respectively. Whereas the average number of aphids/leaf were found 17.15 in control plots. The data showed that low, medium and high dose of Tamaron gave significantly good control of the pest, followed by Thiodan and Ripcord. The later two treated insecticides were found non-significantly different from each other at 5% level of probability in the control of aphid population on wheat. All of the tested insecticides were highly significant compared to the control plots. However the doses of the insecticides were proved non-significant in the reduction of aphid population.

Number of aphid leaf⁻¹ on wheat after one week of spray: The data of chemical control trial against aphids on wheat, recorded after one week (168 hours) show that 8.4, 8.5 and 7.1 aphids/leaf were recorded at low dose. 7.4, 7.8 and 7.1 were recorded at medium dose. 6.8, 8.3 and 6.4 at high dose in Thiodan 35EC, Ripcord 10EC and Tamaron 600SL treated plots respectively. The average number of aphids/leaf were recorded 16.46 in the control plots. The results revealed that Tamaron was found most effective at low, medium and high dose in the reduction of pest population, followed by Thiodan and Ripcord. All of the tested insecticides and their doses were found non-significantly different from each other at 5% level of probability in the control of aphid population. All of the tested insecticides were found significantly effective compared to the control plots.

Grain yield (kg plot⁻¹): The yield data (Table 4) of chemical control trial conducted against aphids on wheat reveal that grain yield 2.25, 2.5, 2.5 (kg plot⁻¹) was obtained in Thiodan 35EC, Ripcord 10EC and Tamaron 600SL treated plots at low dose. 2.5, 1.8 and 2.9 kg/plot at medium dose and 2.25, 1.91 and 2.41 kg/plot at high dose were recorded respectively. The average grain yield in control plots were 1.29 kg/plot. The data showed that Tamaron treated plots provided significantly good average yield followed by Thiodan and Ripcord. Ripcord and Tamaron were found non-significant to each other but significant compared to control plots.

Cost benefit ratio: The per hectare earning (Table 5) in term of Rs 4333.33, 3883.33 and 3450.00 were obtained from wheat plots treated with Tamaron, Thiodan and Ripcord against wheat aphid, compared to check in which the grain yield worth 2150.00 per hectare were obtained. Tamaron ranked first, followed by Thiodan and Ripcord in the cost benefit ratio. The results revealed that all of the three tested insecticides were found effective in the control of wheat aphid compared to untreated (check). Tamaron was ranked first followed by Thiodan. Ripcord (Cypermethrin) was found effective up to two days of spray but it lost its efficacy against the pest
Khan and Maqbool: Control of wheat aphid

afterward. These results are more or less in agreement with the findings of previous workers. Karishniah and Mohan (1983) reported the efficacy of Metamidophos (Tamaron) against wheat aphid. Shafique (1984) obtained control of this pest and increase in wheat yield with application of Tamaron. Thiobenzamid (Endosulfan) was found effective in the control of wheat aphid by Singh and Sircar (1983), Ganhi et al. (1983), Tewari and Moorthy (1983) and Lal (1992). Cypermethrin was found less effective against this pest. Similar results were recorded by Tewari and Moorthy (1983) and Lal (1992).

References
