Predicting Earliness in Cotton During Crop Development Stage-11

G. N. Panhwar, A. R. Soomro, Rehana Anjum, Saira Banu Sabar, A. M. Memon and A. W. Soomro
Central Cotton Research Institute, Sakrand, Sindh, Pakistan

Abstract: Two preliminary earliness indicators (days taken to open first flower and main stem node number of first sympodial branch) were evaluated in an experiment, to check their reliability and also to screen out most early varieties for further exploitation in breeding programs as well as at the farmers fields. The results demonstrated that DNH-49 significantly opened its first flower (44 DAP) earlier than other strains. It was observed as early maturing variety followed by CRIS-82 (45 DAP). CIM-482 opened its first flower after 48 days of planting and was observed as late, followed by FH-900 (47 DAP). As regards the second character (node number of first sympodial branch), the same trend of earliness was observed as in days taken to open first flower. Accordingly, DNH-49 produced significantly lowest main stem node number of first sympodial branch (7.1) and was recorded as early followed by CRIS-82 (7.2) and NIAB-999 (7.3). CIM-482 and FH-900 were observed as late strains in the test which produced significantly highest main stem node number of first sympodial branch (8.6) followed by BH-121 (8.5). The results demonstrated that the two indicators studied are reliable and efficient while predicting the earliness of any variety during the crop development stage.

Key words: Earliness, first sympodial node number, date of first flower, sympodial branch, cotton

Introduction
Earliness of crop maturity is important in the avoidance of frost damage, insect and disease build-up, soil moisture depletion and weathering of the open cotton. Earliness also has other advantages, such as allowing rotation with a winter crop or extending the season for harvesting and ginning operations. Therefore, greater emphasis on earliness has been advocated by cotton breeders in order to increase production efficiencies by decreasing input of fertilizer, water, crop protection and in part, by pest management consideration. Earliness in cotton cannot be measured easily because of the fact that the cotton plant flowers before bolts to a long period of time. Earliness is influenced by how early the cotton plant begins to flower, rate at which the flowers open and the length of time required for the bolt to mature. Anjum et al. (2001) while carrying out earliness studies on five genotypes by evaluating five characters viz., plant height, main stem node number bearing 1st sympodial branch, number of days to bloom first flower / bolt and number of days to attain 5-NAWF (Nodes Above White Flower) stage for their effectiveness in measuring earliness, opined that characters attaining date of 5-NAWF stage and date of opening first flower/bolt were more reliable indicators of earliness. Anjum (1999) conducted earliness studies on five upland cotton varieties and found that varieties with lower node number of first sympodial branch were screened out as early varieties. She further suggested that because CRIS-9 took highest number of day to open its first flower (48.5 DAP) was rated as late variety, whereas CRIS-19 which took 45.5 days to open its first flower was observed as early variety in the test. Aden (1997) while working on some upland cotton cultivars reported that the varieties bearing first sympodial branch considerably at lower main stem node number were rated as early maturing. He further opined that because CRIS-134 opened its first flower comparatively earlier (44 DAP) therefore was recorded as early maturing variety as compared to other varieties included in the test. Lehtaniemi (1997) compared the earliness of the varieties and found that CRIS-9 was one of the early maturing cultivar mainly because of its character of developing its first sympodium at relatively lower position on the main stem. Godoy (1994) worked on seven early lines and one full-season cultivar to gain information on 15 earliness estimators. The results indicated that number of nodes to the first flowering branch, plant height, first square date, date of first flower and date of first open bolt can be used for efficient selection of early genotypes. Although total number of flowers, flower index and maturity index appeared unsuitable as selection criteria, they could be used as indicators of differences between genotypes that are evaluated for yield. Kerby et al. (1990) have reported the association of earliness with lower main stem node number of first sympodial branch.

Munro (1987) reported that the number of main stem nodes produced before the first flowering branch is important characteristic affecting the earliness of the crop. Ray and Richmond (1969) suggested that the node number of the first flowering branch is a morphological measure of earliness of good heritability and is highly correlated with earliness as estimated through picking data of seed cotton. Richmond and Radwan (1962) made a comparative study of seven methods of measuring earliness. Three of the measurements were based on the number of days from planting to the date of a specific phenological event (i.e. date of first square, first bloom, and first open bolt). The other four measurements were based on the ratios of various fractions of the crop yield to the total crop yield. They concluded that out of seven methods used, the most practical was the combined weights of the first and second pickings expressed as a percentage of the total seed cotton harvest. The objective of this study was to see the efficiency and reliability of two preliminary indicators of earliness (days taken to open first flower and node number of first sympodial branch) and also to predict the earliness of cotton varieties during crop development stage in nine candidate strains developed by different breeders of Pakistan.

Materials and Methods
A field experiment was conducted at the experimental area of CCCI Sakrand during 2000 cotton season. The trial included nine candidate strains (DNH-49, CIM-482, BH-125, NIAB-999, MNH-536, CRIS-82, FH-900, AEC-78/3/89 and BH-121) developed by different breeders of Pakistan tested in National Coordinated Varietal Trial. The experiment was conducted in randomized complete block design with four replications. The row-to-row distance was maintained at 2.5 feet whereas plants within rows were thinned out to maintain a distance of 6 - 9" in between. Each treatment plot contained seven rows 47.5 feet long. All the agronomical, nutritional and plant protection requirements of the experiment were completed as and when needed. A random number of ten plants from the fourth row of each cultivar per replication were monitored individually for two earliness indicators (days taken to open first flower and node number of first sympodial branch). The data were statistically analyzed for analysis of variance (ANOVA) adopting Steel and Torrie (1980) procedure.
Table 1: Mean squares obtained from ANOVA of two preliminary indicators of earliness in nine cotton cultivars

<table>
<thead>
<tr>
<th>Sources of variation</th>
<th>Replications</th>
<th>Cultivars</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of freedom</td>
<td>3</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Main stem node number of first sympodial branch</td>
<td>0.226</td>
<td>3.33***</td>
<td>0.372</td>
</tr>
<tr>
<td>Days taken to open first flower</td>
<td>0.189</td>
<td>2.511***</td>
<td>0.228</td>
</tr>
</tbody>
</table>

***Highly significant

Table 2: Mean values of two preliminary indicators of earliness in nine cotton cultivars

<table>
<thead>
<tr>
<th>Variety/strain</th>
<th>Days taken to open first flower</th>
<th>Node number of first sympodial branch</th>
<th>Variety/strain</th>
<th>Days taken to open first flower</th>
<th>Node number of first sympodial branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNH-49</td>
<td>44</td>
<td>7.1</td>
<td>CRIS-82</td>
<td>45</td>
<td>7.2</td>
</tr>
<tr>
<td>CIM-482</td>
<td>48</td>
<td>8.6</td>
<td>FH-900</td>
<td>47</td>
<td>8.6</td>
</tr>
<tr>
<td>BH-126</td>
<td>46</td>
<td>7.5</td>
<td>AEEC/73/89</td>
<td>46</td>
<td>8.1</td>
</tr>
<tr>
<td>NAIB-999</td>
<td>45</td>
<td>7.3</td>
<td>BH-121</td>
<td>46</td>
<td>8.5</td>
</tr>
<tr>
<td>MNH-536</td>
<td>46</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results and Discussion

Mean squares obtained from analysis of variance (Table 1) showed highly significant differences among the cultivars for both the characters studied (days taken to open first flower and node number of first sympodial branch). The range recorded for the trait days taken to open first flower (Table 2) was from 44 DAP (DNH-49) to 48 DAP (CIM-482), whereas for second trait main stem node number of first sympodial branch was from 7.1 (DNH-49) to 8.6 (CIM-482 and FH-900). Similar trend in varietal behavior was recorded for both the characters under study.

Number of days taken to open first flower: There existed highly significant differences among the cultivars for the character number of days taken to open first flower (Table 1). The results demonstrated that candidate strain (DNH-49) opened its first flower (44 DAP) significantly earlier than other strains under study thus as suggested by Solis et al. (1998) that the character days taken to open first flower provide reliable estimation of earliness, DNH-49 was recorded as early maturing in the test when compared with other strains followed by NAIB-999 and CRIS-82 (45 DAP). Accordingly, CIM-482 was observed comparatively late in the test as this strain opened its first flower 48 days after planting (Table 2). Anjum et al. (2001), Anjum (1999), Aden (1997) and Godoy (1994) have also confirmed that the character days taken to open first flower is reliable indicator of earliness. According to their results the variety which takes minimum days to open its first flower will record itself as early maturing.

Node number of first sympodial branch: Highly significant differences among the cultivars for the character node number of first sympodial branch were observed (Table 1). DNH-49 by producing main stem node number of first sympodial branch significantly at lower position (7.1) was observed as early followed by CRIS-82, NAIB-999 and BH-125 which had their main stem node number at 7.2, 7.3 and 7.5 respectively showing the same varietal trend behavior as observed in days taken to open first flower (Table 2). CIM-482 and FH-900 by producing their first sympodial node number significantly at highest position (8.6) were observed as late strains in the test followed by BH-121 (8.5) and AEEC/78/3/89 (8.1). The workers like Anjum et al. (2001), Aden (1997), Anjum (1999), Leghari (1997) and Godoy (1994) have also suggested that the varieties with first sympodial node number at higher position are late maturing and vice versa.

It was therefore, concluded that decisions regarding selection for earliness can be made early in the season keeping in view the date of opening first flower and node number of first sympodial branch. Varietal in maturity of cultivars can be distinguished early in the flowering stage using the above two parameters as suggested by Anjum et al. (2001), Aden (1997), Anjum (1999) and Godoy (1994). Further crop management decisions regarding insect pest control, irrigation and fertilizer applications can be taken keeping in view the above two preliminary characters as reliable indicators of earliness.

References

