Effect of *Pseudomonas fluorescens* for the Management of Insecticide Resistant *Helicoverpa armigera* Hubner (Lepidoptera: Noctuidae)

P. Duraimurugan and A. Regupathy
Department of Agricultural Entomology,
Tamil Nadu Agricultural University, Coimbatore-641 003, India

Abstract: In the present study, the talle-based formulation of *Pseudomonas fluorescens* strain (PI1) was tested against *H. armigera* in cotton, okra and pigeonpea. The susceptibility of *H. armigera* fed on *P. fluorescens* treated and untreated plants was bioassayed against cypermethrin on cotton bolls, okra fruits and pigeonpea pods. The susceptibility of third instar larvae of *H. armigera* to cypermethrin, fed on *P. fluorescens* treated plants did not differ significantly with the untreated plants. However, there was variation in the protein banding pattern among the *P. fluorescens* treated and untreated plants with or without infestation of *H. armigera*. Protein bands of molecular weight 83 and 40 kDa in cotton, 130 and 52 kDa in okra were observed in the *Pseudomonas* treated plants with infestation of *H. armigera*.

Key words: *Pseudomonas fluorescens*, *Helicoverpa armigera*, cotton, okra, pigeonpea

INTRODUCTION

Helicoverpa armigera Hubner has become India’s number one agricultural pest[1]. In India, it causes severe damage to a variety of crops like cotton, pigeonpea, okra, chickpea, tomato and sunflower. The damage by *H. armigera* is estimated at more than Rs 2000 crores ($450 m) nationally with 15% decline in the cotton yield[2]. More than 75% of the insecticides used in cotton are being targeted towards *H. armigera*[3]. Of which, synthetic pyrethroids constitute 50-70%[4]. This high selection pressure led to the development of resistance in *H. armigera*. The utilization of plant’s own defense mechanism is the subject of current interest in the management of pests and diseases. Induced protection of plants against various pests and pathogen by biotic and abiotic inducers has been reported in many crops[5]. Of these, the induced protection by selected strains of non-pathogenic, root-colonizing Plant Growth Promoting Rhizobacteria (PGPR) has been shown to be capable of inducing pest and disease resistance in addition to promoting plant growth. This phenomenon is commonly referred to as rhizobacteria mediated Induced Systemic Resistance (ISR). However, the reports on the use of PGPR for induced resistance against arthropod pests are limited. In the present study, a talle-based powder formulation was tested to assess the susceptibility of *H. armigera* to synthetic pyrethroids after feeding on inducing agent *P. fluorescens* treated plants.

MATERIALS AND METHODS

Susceptibility of *H. armigera* to synthetic pyrethroids after feeding on *P. fluorescens* treated plant sources: To assess the PGPR mediated induced systemic resistance against the susceptibility of *H. armigera* to synthetic pyrethroids after feeding on inducing agent treated plants, a pot culture study was undertaken by using completely randomized design with four replications. The talle-based formulation of PGPR, *Pseudomonas fluorescens* (Strain PI1) containing 2.5 to 3.0x10^6 cfu g^-1 obtained from the Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India was applied as seed treatment, soil application and foliar spray. The dry talle powder was mixed with the seeds of cotton, okra and pigeonpea at the rate of 20 g kg^-1 of seeds along with rice gruel at the rate of 50 mL kg^-1 of seeds[6]. Five gram of talle-based formulation per pot was added 30 days after planting[7]. The talle based product was dissolved in water (20 g L^-1) and allowed to settle for 1 h, filtered through muslin cloth and the filtrate was sprayed 30 days after planting[8]. Untreated checks without bacterial treatment were also maintained. Foliar spray with water 30 days after planting was carried out in the untreated checks.

The different treatments on cotton, pigeonpea and okra are T1-cotton treated with *P. fluorescens*, T2-cotton untreated, T3-okra treated with *P. fluorescens*, T4-okra...
untreated. T$_1$-pigeonpea treated with P. fluorescens, T$_3$-pigeonpea untreated H. armigera, first instar larvae of H. armigera were released on to the bolls of cotton, pods of pigeonpea and fruits of okra and the introduced part of the plants were covered with polyethylene cover and allowed to feed. The larvae grown up to early third instar were bioassayed for susceptibility to cypemethrin by following the bouquet bioassay/foliar residue/terminal bud bioassay method9. The LC$_{50}$ and LC$_{90}$ values of cypemethrin on cotton bolls, okra fruits and pigeonpea pods were determined through probit analysis10.

Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis of crude protein of Pseudomonas treated plants against H. armigera: The total protein was assessed at molecular level for the systemic leaves of P. fluorescens induced cotton, okra and pigeonpea plants with and without infestation of H. armigera and it was compared with the untreated plants. The leaf (with and without feeding of H. armigera) tissues were collected and immediately homogenized. One gram of powdered leaf samples was homogenized with 1 mL of 0.1 M sodium phosphate buffer (pH 7.0) under 4°C. The homogenate was centrifuged for 20 min at 10000 rpm. The supernatant was used for the SDS-PAGE11.

RESULTS AND DISCUSSION

Susceptibility of H. armigera to synthetic pyrethroid after feeding on P. fluorescens treated plant sources:

There was no significant difference in the susceptibility of H. armigera fed on P. fluorescens treated and untreated host plants as the LC$_{50}$ values were comparable (Table 1). The LC$_{50}$ value of cypemethrin for the P. fluorescens induced plants was 4.50, 4.07 and 5.28 μg/larva, while the normal plants registered a LC$_{50}$ of 4.75, 3.90 and 4.95 μg/larva on cotton bolls, okra fruits and pigeonpea pods, respectively.

In addition to direct antagonism and plant growth promotion, certain isolates of fluorescent pseudomonads, interestingly bring about induction of systemic resistance against infection by herbivores8,12. Delivery of P. fluorescens through seed, soil, root or foliage leads to the reduction in the incidence of pests6,7. But in the present investigation there was no significant difference in the susceptibility of H. armigera which fed on P. fluorescens treated and untreated plants as the LC$_{50}$ values for cypemethrin were comparable (Table 1). This is contrary to the reports of Murugan9, who observed that the lower level LC$_{50}$ value of the quinalphes, chlorpyrifos and profenophos to H. armigera on the jasmonic acid and P. fluorescens induced tomato plants compared to normal plants. Unlike the pathogens, P. fluorescens did not kill the insects through the host plant. Its application brings some physiological changes in host plants that prevent the insects from feeding8,13. This may be the reason, why Pseudomonas induced plant infested with H. armigera did not vary with the concentration mortality response with the normal plants.

SDS-PAGE analysis of crude protein of Pseudomonas treated plants against H. armigera: It was found that there was variation in the protein banding pattern among the Pseudomonas treated and untreated plants with or without infestation (Fig. 1). The intensity of bands were very high in H. armigera infested Pseudomonas treated plants, where as it was less in case of Pseudomonas untreated plants without infestation. Pseudomonas induced proteins with molecular weight of 83 and 40 kDa against H. armigera in cotton. In okra, it was noticed that protein with low relative mobility of 130 and 52 kDa with high intensity was induced. In pigeonpea, there was no induction of protein. However, 10 kDa protein was observed in Pseudomonas treated and untreated plants only after H. armigera infestation (Fig. 1).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>LC$_{50}$ (μg/larva)</th>
<th>Frudicial limits</th>
<th>LC$_{50}$ (μg/larva)</th>
<th>Frudicial limits</th>
<th>λ$_2$</th>
<th>Regression equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. fluorescens untreated plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotton bolls</td>
<td>4.75</td>
<td>4.02</td>
<td>5.66</td>
<td>19.85</td>
<td>13.50</td>
<td>41.17</td>
</tr>
<tr>
<td>Okra fruits</td>
<td>3.90</td>
<td>3.11</td>
<td>4.71</td>
<td>21.04</td>
<td>13.40</td>
<td>53.84</td>
</tr>
<tr>
<td>Pigeonpea pods</td>
<td>4.95</td>
<td>4.17</td>
<td>5.98</td>
<td>22.20</td>
<td>14.53</td>
<td>50.98</td>
</tr>
<tr>
<td>P. fluorescens treated plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotton bolls</td>
<td>4.50</td>
<td>3.70</td>
<td>5.48</td>
<td>23.29</td>
<td>14.65</td>
<td>60.59</td>
</tr>
<tr>
<td>Okra fruits</td>
<td>4.07</td>
<td>3.28</td>
<td>4.92</td>
<td>21.72</td>
<td>13.77</td>
<td>55.92</td>
</tr>
<tr>
<td>Pigeonpea pods</td>
<td>5.28</td>
<td>4.58</td>
<td>6.65</td>
<td>28.12</td>
<td>16.80</td>
<td>84.14</td>
</tr>
</tbody>
</table>

LL-Lower Limit, UL -Upper Limit
The crude protein profile of *P. fluorescens* treated plants after infestation with *H. armigera* showed variation in the protein banding pattern compared to untreated plants with or without infestation. Rajacoomare et al. reported that the *Chlamydomonas reinhardtii* treated *Pseudomonas* treated rice plants induced proteins with molecular weight of 41 kDa compared to the untreated plants. This is in agreement with the present investigation. However, the induced proteins observed in the present study were not sufficient to make susceptibility in *H. armigera* against pyrethroids.

ACKNOWLEDGMENTS

The financial support from the Common Fund for Commodities (CFC) Europe, International Cotton Advisory Committee (ICAC) USA and Natural Resource Institute (NRI), UK is acknowledged.

REFERENCES

