Research Article

Impact of Front-of-package (FoPTL) Traffic Light Nutrition Labels in the College Students

Prasetyo Maitri and Fatmah

Department of Public Health Nutrition, Faculty of Public Health, Universitas Indonesia, Depok 16424, West Java, Indonesia

Abstract

Background and Objective: Front-of-pack Traffic Light (FoPTL) label have been widely discussed as a tool for guiding consumers with regard to making healthy food purchase choices. Despite the prevalence of these labels, Indonesian studies on the impact of FoPTL label on consumers are extremely scant. As a response, this study aimed to evaluate both the acceptance (liking, attraction and cognitive workload) and the subject’s objective comprehension of FoPTL label. Materials and Methods: The study employed a pretest-post test quasi-experimental design (control group). Forty college students were invited to participate as the subjects who were divided into intervention group and control group. They introduced to different nutrition labelling formats: FoPTL label (intervention group) and nutrition facts labels (control group). The participants were asked to complete a questionnaire containing 13 questions on the acceptance of nutrition labels (including their liking, attraction and cognitive workload) and 23 questions aimed at measuring their comprehension of the nutrition labels and their ability to identify the health value of a food product from the nutrition labels provided. Results: The mean difference between the two groups was analyzed using an independent t-test. The empirical evidence was derived from the results indicated that the FoPTL label had higher acceptance than the nutrition facts label (p<0.05). The comprehension test indicated that the FoPTL label had a higher mean difference of correct answers (28.80±12.63) than the nutrition facts label (12.50±20.76). Conclusion: FoPTL label were more effective in terms of improving college student consumers’ awareness when selecting healthier food products.

Key words: FoPTL label, nutrition fact label, acceptance, comprehension, college students

Received: October 03, 2018
Accepted: November 09, 2018
Published: March 15, 2019

Corresponding Author: Fatmah, Department of Public Health Nutrition, Faculty of Public Health, Universitas Indonesia, Depok 16424, West Java, Indonesia
Tel/Fax: 62217863501

Copyright: © 2019 Prasetyo Maitri and Fatmah. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.
INTRODUCTION

Food selection plays a determining role in obesity as a serious and growing health issue throughout the world. Studies and research have documented the impact of the use of nutrition labels on the increase of nutrition values such as fiber and assisting in the reduction of caloric intake from sugar, fat, natrium and cholesterol. Nutrition labels are viewed as a potentially cost-effective tool in helping to guide consumers’ selection behavior, which may be beneficial in preventing nutrition-related diseases such as heart disease, diabetes and cancer. College students are significantly more prone to poor comprehension and attitudes with regard to the reading of nutrition labels. Their progression from adolescence to adulthood is a period marked by changes in their attitudes, routines and preferences. This adaptive phase marks the period in which they begin to make their own decisions regarding food selection.

Effective nutrition labels provide accurate information aimed at assisting consumers to quickly evaluate the healthiness and attractiveness of food products (liking, familiar, easy to comprehend, affect purchase intention and rated as credible). Thus, it is possible to measure the effectiveness of nutrition labels by evaluating consumers’ level of comprehension and acceptance (including liking, attractiveness and cognitive workload) towards them. Sadly, the average reading behavior and level of comprehension of Indonesian consumers remain low.

In a bid to both increase consumers’ reading behavior and aid their understanding of nutrition labels, in 2007 the UK Food Standards Agency (FSA) developed Front-of-Pack Traffic Light (FoPTL) label. The design characteristics of Front-of-Pack (FoP) label include a color-coded categorisation of the food product’s nutritional value center on the three colors (traffic lights) of red (high level), yellow (medium level) and green (low level). The system is based on regulations published by the European Parliament with the most commonly displayed nutrients comprising total fat content, saturated fat, sugar and natrium. By and large, these studies revealed that consumers were more inclined to choose healthier food products using the traffic light (TL) labelling system than other forms of label. Furthermore, another study demonstrated the declining consumption of calories, total fat, saturated fat and salt following the introduction of TL nutrition labels. An experimental study conducted by Sonnenberg et al. in a hospital canteen in Boston concluded that an intervention based on FoPTL nutrition label led to an improvement in consumers’ awareness of the health aspect of the products they purchased.

Those consumers who were fully aware of the FoPTL nutrition label tended to buy healthier food products. A similar study was conducted by Seward et al. at the canteen of Harvard University. Over the course of the 7 week intervention, they recorded a drop in the sales of those food products with yellow Front of Package (FoP) label (a weekly decrease of 2.2%) and red FoP labels (a weekly decrease of 4.1%) among the intervention group. Moreover, 48% of the college student participants reported a change in their food selection following the FoPTL intervention, with a total of 59% of the college students affirming the usefulness of FoPTL label. Likewise, Hamlin et al., in their study conducted among 250 college students in New Zealand, found that the subjects in the nutrition labels intervention group made healthier food purchases than those in the control group.

Two another studies on nutrition labelling conducted in New Zealand and Uruguay. The first study assessed the impact of the Multiple Traffic Light label and Health Star Rating on the healthiness of consumer food purchases via smartphone application. The second study studied the impact of using FoPTL and The Chilean warning system on the children in grades 4-6 from 12 primary schools. The impact of FoPTL labeling on children’s choices was lower than the warning system. Both the study had different tool and the type of subject to assess the consumer nutrition information knowledge and puchase. The principal rationale for the sample selection was the poor reading behavior of nutritional labels. From the total population, only 13.4% who always read nutrition labels before purchasing food products, while 57.5% had poor nutrition label reading behavior.

The study focused on the female college student (aged 18-24) due to women were more likely to read nutrition labels than men. In addition, college students had been found to have a low comprehension rate (44.62) of the nutritional value of food. Another rationale for the sample selection was the ready availability and ease of purchasing packaged products at the numerous supermarkets and shopping centers located around the UI campus area. The present study aimed to assess the FoPTL labels on the attractiveness (comprehension) and acceptance to female college students.

The present study used FoPTL in dummy packages and booklet explaining FoPTL nutrition label for the intervention group and the nutrient information labels for control group. The study had different target, study design and the tools. In addition, a limited number of studies on the effect of FoPTL in campus setting in Asian Region reported. The present studies will add to the list of the Asian studies in the public health nutrition field.
MATERIALS AND METHODS

Population and sample: This study employed a quasi-experimental design on 40 students at UI. The inclusion criteria were as follows: (i) Currently a student at UI, (ii) Female, (iii) Aged between 18 and 24 and (iv) Had independently purchased packaged food products in the last month. To ensure the homogeneity of the sample, women were selected as the research subject for the study. In addition, women were more likely to read nutrition labels than men\(^2\). Further subject characteristics were (i) Studying the Social Humanities discipline and (ii) No family member working in either the food or health industries. In the first phase, 20 subjects were selected using the Purposive Sampling Method based on the aforementioned inclusion criteria. These 20 subjects formed the intervention group, while the other 20 subjects made up the control group. An ethical review license for this study was obtained from the Faculty of Public Health, UI. All subject should filled the informed consent before participating in the study.

Questionnaire: An analysis was performed of the completed questionnaires containing personal information, answers on reading behavior with regard to nutrition labels, the acceptance of nutrition labels and the participants’ comprehension of nutrition labels. The questionnaire was a modified version of a previously published nutrition knowledge questionnaire\(^2,25\), nutrition labels acceptance questionnaire\(^2\) and nutrition labels comprehension questionnaire\(^4,12,26\). A trial test of the questionnaire was performed on a different research subject.

Dummy packages: The dummy packages used were fictitious food or drinks packages that incorporated a picture of the food, the packaging weight and nutrition labels. In order to avoid bias, the imaginary brand name used differed from those already found within the market. The food products selected were yogurt, instant noodles and wafers. The products were selected based on a survey of the biggest-selling packaged food products in Indonesia\(^27\).

Label format front-of-pack (FoP): Two commonly used FoP nutrition label were the nutrient-specific and summary labels. Nutrient-specific labels contain information pertaining to several nutrients in the form of, for example, Guideline Daily Amount (% Guideline Dietary Amount (GDA)) and TL indicators. The percentage GDA figures revealed information on the nutritional element content of each serving and the

Traffic light (TL): The design was aimed at educating consumers through the provision of a simple and intuitive expression of a product’s nutritional information that they could use to help them make healthier food choices\(^30\). Each of the TL colors indicated expert recommendations with regard to the total energy and nutrients contained in the product. The three main colors used in the TL design and their meanings put in Fig. 1 as follows\(^\text{30}\):

- **Red**: Food product contains a high level of the ingredients in question-for example, the product was high in fat, had a high salt content, etc. and may therefore contributed to nutrient-related diseases such as diabetes. Red denoted that the food product was fine to eat the food occasionally but that consumers should carefully monitor how often or how much of these products they consume
- **Yellow**: Food product contains moderate levels of the ingredients i.e., fat, saturated fat, sugar and salt nutrients but the level of consumption must still be controlled
- **Green**: Low fat, sugar and/or salt content. The more green light indicators

Booklet: The educational media for teaching consumers how to read nutrition labels comprised two booklets, one

![Fig. 1: Design of food of traffic light (FoPTL) nutrition label](image-url)
explaining FoPTL nutrition label for the intervention group and the other on nutrient information labels for the control group. Both booklets explained the concept of nutrition labels, the composition of the food products and how to read and use the labels, in addition to a brief description of fat, sugar and salt and their impact on health.

Data collection: The study was conducted over a period of three weeks (three meetings) in March-May, 2018 at Faculty of Economic and Business and Faculty of Social and Political Science, Universitas Indonesia at Depok city, West Java province, Indonesia. The study began with the collection of primary data, which included the following: (i) Subject characteristics (age, nutritional status, living allowance), (ii) Nutritional and health knowledge levels, (iii) Nutrition labels reading behavior and (iv) Acceptance and comprehension of FoPTL labels. College students from the Economic and Business Faculty, UI were appointed as the intervention group and looked at FoPTL labels, while students from the Social and Political Sciences Faculty, UI were established as the control group who given the nutrition value information labels. A pre-test was used to assess the subjects’ level of understanding of nutritional labels in both groups, with the subjects being required to answer 23 questions regarding their understanding of nutritional labels based on dummy food product packaging. The survey participants had received booklets designed to educate them on how to read nutrition labels and the nutritional content of different foods and beverages. The booklets also provided an explanation of the consequences of eating below or above their recommended nutritional intakes. At the second meeting in week 2, an educational seminar on how to read and use nutrition labels undertaken. At the third meeting in week 3, the subjects were tested on their healthy food selection abilities based on the nutrition labels displayed on the dummy packaging. There were 13 point questionnaires to measure the subjects’ acceptance of nutrition labels. Each session lasted for between 15 and 30 min. Questionnaires containing 23 multiple choice questions were distributed to measure the subjects’ understanding of nutrition labels. The questions enquired about (i) The categorization of nutritional content and (ii) Food product selection based on the nutritional content disclosed on the label.

Data analysis: Data analysis was performed using SPSS 21.0. A chi-square test was used to obtain the mean value of acceptance in both groups at the end of the intervention. Aside from analyzing the changes and differences, bivariate analysis was recommended to analyze the correlation between the numerical variables. The statistical tests employed in this study were the paired t-test and independent t-test. The paired t-test was utilized to examine the difference in mean between the intervention group and control group at the pre-test and post-test stages. The independent t-test was conducted to investigate the mean difference between the intervention group and control group’s acceptance at the pre-test and post-test stages. The criterion for significance was set at 95%.

RESULTS

Data in Table 1 presented the characteristics of the subjects in the intervention group and the control group. Both groups had homogenous characteristics (age, household composition, the frequency of packaged product purchase and knowledge of nutrition). The majority of the subjects lived independently in either a dormitory or boarding house. The research subjects comprised those whose parents’ income was in the range IDR 3,000,000-IDR 10,000,000 (for both the intervention group and control group). Moreover, the majority of the subjects spent IDR 259,000 on fewer than 4 purchases of packaging food products. Current findings showed that even-though most of the subjects had a proper level of awareness with regard to health issues, their knowledge and understanding of nutrition remained very shallow. Between the intervention group and control group, the former had a better understanding of nutrition.

The results pertaining to the mean value of the subjects’ understanding of nutrition labels before and after the research period were presented in Table 2. The change in the mean difference of the intervention group at the end of study was twice the size of that of the control group (28.8 points vs. 13.05 points, respectively). On the other hand, the intervention group also had a higher acceptance level which covered several aspects, namely liking, attractiveness and perception of cognitive workload. The superiority of the intervention group can also be seen from the average difference in the acceptance of nutrition labels. Further analysis proved the significant difference in the acceptance of nutritional labels between the two groups (Table 3).
Table 1: Characteristic of subjects

<table>
<thead>
<tr>
<th>Variables</th>
<th>Intervention (n = 20)</th>
<th>Control (n = 20)</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residence status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alone (boarding house)</td>
<td>12 60</td>
<td>11 55</td>
<td>0.350-4.307</td>
<td>0.749</td>
</tr>
<tr>
<td>Living with family</td>
<td>8 40</td>
<td>9 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>IDR 10,000,000</td>
<td>3 15</td>
<td>1 5</td>
<td>0.145-8.786</td>
<td>0.113</td>
</tr>
<tr>
<td>IDR 5,000,000-10,000</td>
<td>8 40</td>
<td>4 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR 3,000,000-5,000</td>
<td>8 40</td>
<td>9 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td><IDR 3,000,000</td>
<td>1 5</td>
<td>6 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expenditure of buying packaging food product</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>IDR 259,000</td>
<td>7 35</td>
<td>9 45</td>
<td>0.184-2.350</td>
<td>0.519</td>
</tr>
<tr>
<td>≤IDR 259,000</td>
<td>13 65</td>
<td>11 55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of buying packaging food product</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>4 times</td>
<td>7 35</td>
<td>8 40</td>
<td>0.224-2.912</td>
<td>0.744</td>
</tr>
<tr>
<td>≤4 times</td>
<td>13 65</td>
<td>12 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health perception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>16 80</td>
<td>14 70</td>
<td>0.400-7.340</td>
<td>0.465</td>
</tr>
<tr>
<td>Bad</td>
<td>4 20</td>
<td>6 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good (≥64.83)</td>
<td>13 65</td>
<td>9 45</td>
<td>0.636-8.106</td>
<td>0.204</td>
</tr>
<tr>
<td>Bad (< 64.83)</td>
<td>7 35</td>
<td>11 55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Comparison of mean difference nutrition label understanding score after study

<table>
<thead>
<tr>
<th>Groups</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Difference</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>61.00±11.72</td>
<td>89.80±8.65</td>
<td>28.80</td>
<td>22.935-34.647</td>
<td>0.000*</td>
</tr>
<tr>
<td>Control</td>
<td>53.30±16.86</td>
<td>66.35±15.58</td>
<td>13.05</td>
<td>3.618-22.482</td>
<td>0.009*</td>
</tr>
</tbody>
</table>

*Significant level at p<0.05

Table 3: Comparison of nutrition label acceptability in the two groups

Acceptability component	Mean±SD																					
-------------------------	---------		Difference		Control		95% CI		p-value		Difference		95% CI		p-value		Difference		95% CI		p-value	
Liking	4.50±0.500		3.35		0.440		0.648-1.252		*0.000		4.40		0.648-1.252		*0.000		4.50		0.648-1.252		*0.000	
Attractiveness	4.16±0.603		3.69		0.370		0.155-0.795		*0.005		4.00		0.533		0.606-1.274		*0.000					
Perceived cognitive workload	4.42±0.510		3.48		0.533		0.606-1.274		*0.000		4.40		0.533		0.606-1.274		*0.000					

*Significance at p<0.05, DS: Deviation standard

DISCUSSION

Amelioration of the understanding and acceptance of nutrition labels at the end of the study period was supported by the significant difference between the understanding and acceptance of nutrition labels of the intervention and control groups. Taking into account the acceptance indicators of (i) Liking, (ii) Attractiveness and (iii) Perceived cognitive workload, the intervention group had a higher acceptance rate than the control group. The present study confirm the results obtained in studies by Borgmeier and Westenhoefer and Sonnenberg et al. which revealed a strong association between consumers’ ability to select healthy products and the labelling system, which in the case indicated that TL label was more effective in improving consumers’ acceptance. A study on consumer understanding of nutrition labels stated that interpretive tools can help consumers assess the impact of nutrients on health. The study maintained that consumers prefer simple to complex nutrition labels. This finding was supported in research by Hersey et al., who found that simplified nutrition labels influenced consumer decision-making and attitudes, including better attention, understanding, use and purchasing behavior. Edge et al. revealed that FoP nutrition labels can
improve consumers’ ability to identify healthier products10. Likewise, Roberto and Khandpur11 discovered that the FoP nutrition labels can improve the accuracy of a consumer’s assessment of a food product’s nutritional value81. Research carried out by Hawley et al.12 suggested that consumers perform better in identifying the health value of a product that employs a Multiple Traffic Light (MTL) system of indicators than other labelling formats12.

Significant differences between the intervention group and control group were primarily found for the categorization component of nutrient content and product selection based on nutrient content. Meanwhile, there was no significant difference between the two intervention groups with regard to nutrient value. It was the case because the FoPTL nutrition label disclose additional information in the form of a color code which can be used to denote high/medium/low as required. As a result, consumers are able to categorize products according to their nutritional value. The numerical information deemed effective for measuring the nutritional value was available on both the FoPTL nutrition label and other nutrition labels. The lower comprehension rate of the control group compared to the intervention group can be explained by a study by Cow burn and Stockley1, who discovered that consumers had a weak level of comprehension of numerical or technical nutrition labels5.

Furthermore, consumers had difficulty in understanding the impact of each nutrient in the context of their health, as well as the terms used on the nutrition labels. It was assumed that different label formats can cause a different level of absorption of information11. In a study by the Food Standards Agency14, the subjects were asked to evaluate whether a nutrient was considered to be high, medium or low in content15. Among the various label formats, the FoPTL nutrition label were perceived as containing more correct information than other nutrition labels. The underlying cause of this phenomenon was that the FoPTL nutrition label provided the information that was required, which was not the case with the other nutrition labels. In another study, the use of RDA was believed to have helped consumers who wanted to purchase a food product that had a high content of a specific nutrient16. Moreover, the present study found that the intervention group outranked the control group in terms of correctly answering the questions posed in the questionnaire. Similar findings were observed by Which13, where 90% of the subjects in a study correctly answered the questions asked by using TL label17.

Studies conducted by Grunert and Wills18 and Van Kleef et al.19 in various countries confirmed that FoP labels have better label acceptance and comprehension than other types of nutrition labels placed on the back of the packaged food20,21. Consumers were drawn to a more simplified label, which corroborates our finding of greater acceptance of FoP labels12. Besides, unembellished labels can be easily located when shopping for food and beverages16. The evidence presented by Maubach et al.21 showed a consistent link between the use of FoP labels and consumers’ ability to understand nutrition labels17. Among the factors that drew consumers to FoP labels were the use of colored symbols to alert consumers to the nutrient content of the foods or beverages in question, along with the ‘easy to understand’ nature of FoP label. A study by the FSA found that MTL and color-coded GDA were preferable to other nutrition labels.

As previously mentioned, consumers are attracted to color-coded labels14,23,24. Moreover, the use of RDA serves to bolster consumers’ trust in the information disclosed in the nutrition labels. The RDA data also enables consumers to verify information and provides a sense of openness and transparency15,26. Liking is not necessarily associated with comprehension. Nonetheless, it can have a large impact on the use of nutrition labels. Higher liking of a nutrition label was highly correlated with a better product evaluation process25. Consumers declared their preference for the FoPTL nutrition label design due to its use of colors, which served to improve the level of attention that they paid to it. In addition, it stimulated their response time and generated a lower rate of misinterpretation of nutritional value compared to non-color-coded nutrition labels51.

CONCLUSION

The study concluded that the FoPTL label acceptance at the intervention and control groups increased before and after being given intervention. The intervention group had higher FoPTL label understanding and acceptance than the control group. Both groups had FoPTL acceptance which were significantly at pre-post study.

RESEARCH LIMITATIONS

This study had a number of limitations in the form of the time constraint, the absence of a negative control group and the acceptance and comprehension of the nutrition labels questionnaires. Firstly, the study was conducted over a very brief time period (3 weeks), partly due to the end of the research subjects’ college term, which made it impossible to extend the research period. Another limitation was the researcher’s attempt to avoid the month of Ramadhan (fasting
month). The fact that the majority of the subjects were fasting during Ramadhan reduced the internal validity of the study. A further limitation of the study was that it did not employ a negative control group. Consequently, it was not possible to perform an examination of the intervention group’s effectiveness. Moreover, the researcher had not conducted a validation test of the questionnaire, meaning that the sensitivity of each question asked could not be known.

SIGNIFICANCE STATEMENT

The study showed significant difference of FoPTL label understanding and acceptance among the intervention and control groups. The study had new methodology by using quasi experimental study design on the female college students from social science background who might be had limited nutrition information knowledge and care. The study will complete and support over prior research results in the world mainly in Asian Region.

The study findings can be used by the National Agency of Drug and Food Control of Republic of Indonesia (BPOM RI) as the basis for a further investigation of FoPTL label by employing a different research methodology, subject characteristics and location (future studies may be conducted in rural areas).

ACKNOWLEDGMENT

We would like to big thank to Directorate of Community Engagement and Research of Universitas Indonesia for their fund from the student final research project grant (Hibah PITTA UI) 20018 No.2193/UN2.R3.1/HKP.05.00/2018. The Impact of Front-of-Package (FoPTL) Traffic Light Nutrition Labels in the College Students.

REFERENCES

23. Kartika, M.D., 2015. The nutrition knowledge as a dominant factor of reading nutrition label among college student at the three selected faculties of Universitas Indonesia year 2015. Faculty of Public Health Universitas Indonesia, Depok.
27. USDA, 2006. Indonesia retail foods: Retail foods update. USDA, Jakarta.