Particle Bombardment-mediated Co-transformation of Chitinase and β-1, 3 Glucanase Genes in Banana

1,2 S. Sreeramanan, 1 M. Maziah, 1 N.M. Rosli, 3 M. Sariah and 3 R. Xavier
1 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor DarulEhsan, Malaysia
2 Department of Biotechnology, Asian Institute of Medicine, Science and Technology Amanjaya, 08000, Sungai Petani, Kedah
3 Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia

Abstract: An efficient transformation system for Pisang Rastali (AAB) was developed using an optimised particle bombardment device, improved antibiotic selections and co-transformations procedure and a simple protocol for regeneration of transformants. Recent progress with advanced in vitro cultures of banana such as establishment of highly regenerable tiny single meristem buds offered the opportunity for the production of disease tolerant transgenic bananas. Chitinase and glucanase the important disease tolerant genes were successfully transformed into banana together with gfp and gus4 genes as reporter gene. Five different treatments using different chitinase and glucanase genes inserted singly or in combination were carried out and resulted in earlier detection of transient expression of gfp and gus4 genes. Proliferating single buds were selected on geneticin G-418 (solid-liquid-solid medium) to produce a number of putatively transformed bananas. Molecular analyses such as Polymerase Chain Reactions (PCR) and Southern blot was performed to confirm the integration and expression of the introduced genes in genome. Protein assay of extract from the transgenic plantlets showed an increased in chitinase and β-1,3-glucanase enzymes activity over the untransformed plantlets. The present of particle bombardment-mediated transformation system reported here is suitable for using tiny single meristem buds to obtain fungal disease tolerant or resistant banana through genetic engineering.

Key words: Banana, Particle bombardment, GUS, GFP, Chitinase, β-1,3-glucanase

INTRODUCTION

Banana is the world’s largest fruit crop with an annual production of 58.6 million tons (Anonymous, 2001). In Malaysia, the banana has been traditionally cultivated in smallholdings and also as an intercrop. Pisang Rastali is a local dessert banana which belongs to the AAB group is known to be susceptible to Fusarium wilt disease which causes heavy losses in banana plantation sectors in Peninsular Malaysia.

Conventional breeding of banana is hampered by long generation time, triploidy, the long cropping cycle and sterility of most edible cultivars (Vuylsteke et al., 1993). These difficulties could be overcome by genetic engineering techniques with the introduction of genes conferring resistance to fungal pathogens. The two most common of genetic engineering system in banana is via Agrobacterium-mediated and particle bombardment transformation (May et al., 1995; Becker et al., 2000; Ganapathi et al., 2001). In this study, particle bombardment was used for Pisang Rastali (AAB) transformation using tiny single meristem buds.

Co-transformation is a process in which genes carried on separate plasmids are mixed prior to transfer by particle bombardment (Chen et al., 1998). Co-transformation is a potential tool to create multiple and durable resistance in banana (Remy et al., 1998a). Transgenic tomato plants expressing only a chitinase or a β-1,3-glucanase transgene were susceptible to Fusarium oxysporum, but plants expressing both genes had significantly higher resistance than the plants expressing only chitinase or β-1, 3-glucanase (Jongedijk et al., 1995). Similarly, Jach et al. (1995) demonstrated that tobacco plants expressing a barley β-1, 3-glucanase and a chitinase gene had a greatly enhanced resistance compared to plants expressing only one of these two enzymes. Bliffeld et al.
(1999) introduced barley seed class 11 chitinase gene (Pr3) driven by maize ubi promoter along with \(\beta-1,3 \)-glucanase gene in Bobwhite cultivar of wheat using particle bombardment. Stable expression of transgenes was observed in successive three generations and transgenic plants showed increased resistance to infection with the powdery mildew-causing fungus *Erysiphegraminis*.

Five different treatments using different chitinases and \(\beta-1,3 \)-glucanase genes inserted singly or in combination were carried out. Multiple genes encoding either chitinases (RCC2 or Chi) or \(\beta-1,3 \)-glucanase (Eg) and both was bombarded together with *gfp* gene (pGEM-Ubi-Sgfp865T) for early transient expression signal using an optimised physical and biological condition (Sreeramanan et al., 2005).

MATERIALS AND METHODS

Plant materials: Corn slices of *in vitro* plantlets were cultured in MS (Murashige and Skoog, 1962) medium supplemented with different concentrations of 6-Benzylaminopurine (BAP) to obtain multiple bud clumps (Sreeramanan et al., 2002). The cultures were incubated at 25±2°C and a 16 h photoperiod with cool white fluorescent light of 150 μmol m\(^{-2}\)s\(^{-1}\) supplied with Philips TLD fluorescent light tubes. Single meristem buds (3 mm) were used as a target tissue in this transformation study.

Plasmid constructs: The three plasmid constructs used throughout this study are as follows:

- **pBI333-EN4-RCC2:** The plasmid pBI333-EN4-RCC2 contains the *nptII* gene linked to the nopaline synthase gene (*nos*). Plasmid pBI333-EN4-RCC2 was constructed to replace the *gusA* gene of pBI121 (Clontech, USA) with the cDNA (RCC2) of the rice chitinase gene.

- **pMRC1301:** The plasmid pMRC 1301 contains the *gusA* and *Chi, chitinase* gene, driven by the rice *actin 1* promoter. It carries the *nptII* gene that confers kanamycin resistance.

- **pROKla-Ex:** The plasmid pROKla-Ex contains the *nptII* gene linked to the nopaline synthase gene (*nos*) promoter and the soybean \(\beta-1,3 \)-endoglucanase cDNA linked to the CaMV 35S (35S) promoter in the T-DNA region.

- **pGEM-Ubi1-sgfp865T (GFP):** The plasmid contains a *gfp* gene driven by a maize *polyubiquitin 1 (Ubi 1)* promoter.

Table 1: Five treatments with different combination of plasmids containing chitinase and \(\beta-1,3 \)-glucanase were used together with *gfp* gene as a reporter gene.

| Table 1: Five treatments with different combination of plasmids containing chitinase and \(\beta-1,3 \)-glucanase were used together with *gfp* gene as a reporter gene |
|---|---|
| **Treatments** | **Combination of plasmids** |
| 1 | pBI333-EN4-RCC2 + pROKla-Ex |
| 2 | pMRC1301 + pROKla-Ex |
| 3 | pBI333-EN4-RCC2 |
| 4 | pMRC1301 |
| 5 | pROKla-Ex |

Preparation of DNA and particle bombardment: The plasmid DNA was precipitated onto gold according to the instruction manual for the Biolistic PDS-1000/He device. Each bombardment was performed twice at 1100 psi rupture disk pressure, 4 mm rupture disk to macrocarrier distance, 11 mm macrocarrier to stopping screen distance, 9 cm stopping plate to target tissue distance and 28 mmHg vacuum pressure.

Co-bombardment: There were five treatments used in this experiment (Table 1). Plasmid pGEM-Ubi1-sgfp865T (GFP) was co-transformed in all treatments as a reporter marker to monitor early detections of successful gene insertions.

Selection and regeneration system: After bombardment, single buds were transferred to MS medium containing 10 mg L\(^{-1}\) of BAP and were allowed to recover for two weeks in the absence of antibiotic selection. After this recovery period, explants were transferred to the same medium containing 50 mg L\(^{-1}\) geneticin G-418 for two weeks. The survived explants were transferred back to the liquid medium containing 25 mg L\(^{-1}\) of geneticin G-418 for additional two weeks. Liquid medium selection provides a better contact between the tissues and the antibiotic solution. The survived tissues were further selected in MS solid medium using geneticin G-418 at 25 mg L\(^{-1}\). The survived explants were maintained in hormone free medium for plant regeneration. The regenerated plantlets from each putatively independent transformed cell line were maintained under *in vitro* conditions for further confirmation.

Histochemical GUS Staining: Bombarded tissues were assayed for GUS expression according to that of Jefferson et al. (1987).

Visualisation of GFP: A florescence microscope (Leica MZFL 111) equipped with GFP 2 filter set was used to monitor the GFP expression of transformed tissues.

Polymerase Chain Reactions (PCR): Genomic DNA were extracted from eight putative transgenic lines using an improved and modified CTAB method adopted from Pasakinskiene and Paplauskience (1999). PCR
was done using the DNA Thermal Cycler 480 machine (Perkin-Elmer). RCC2 and Chi (Chitinases gene), Eg (β-1, 3 glucanase) and nptII genes were amplified using standard protocols (Sambrook et al., 1989). The following primers were used to amplify the transgenes and part of the regulatory sequences (Table 2).

PCR amplifications were carried out in 100 μL reactions volume containing template DNA (500 ng genomic DNA or 60 ng plasmid DNA), 200 ng of each primer (forward and reverse), 0.2 mM dNTP mix, 1.5 mM MgCl2, 1X PCR buffer and 5 U Taq DNA polymerase (MBI Fermentas). Amplification for gfp and gusA genes were performed using the following conditions: 1 cycle of 94°C for 5 min; 30 cycles of 94°C (30 sec), 60°C (1 min) and 72°C (2 min) and 1 cycle of 72°C for 7 min. Amplification of chitinase gene (RCC2) fragments was performed for 35 cycles at 94°C for 1 min, 55°C for 1 min and 72°C for 2 min, for denaturing, annealing and primer extention, respectively. The conditions for amplification of chitinase gene (Chi) conducted were: 1 cycle of 95°C for 5 min; 35 cycles of 95°C (1 min), 58°C (1 min) and 72°C (2 min) and 1 cycle of 72°C for 7 min. Amplification of β-1,3 glucanase gene (Eg) fragments was performed for 45 cycles at 94°C for 1 min, 40°C for 2 min and 72°C for 3 min, for denaturing, annealing and primer extention, followed by 72°C for 7 min. Amplification of nptII gene fragments was performed for 35 cycles at 94°C for 1 min, 62°C for 1 min and 72°C for 2 min, for denaturing, annealing and primer extention, respectively. All amplified PCR products were checked on 1.2% agarose gel.

Extraction and determination of total acid soluble proteins: Tissue samples (0.25 g) were homogenised in 5ml extraction buffer (0.1 M sodium buffer, 1 mM EDTA, 0.1% mercaptoethanol, pH 5.2), with 100 mg insoluble polyvinyl polypyrrolone. Protein was quantified by Bradford methods (1976), at wavelength 595 nm. Total acid soluble protein was expressed in mg/g fresh weight by using bovine albumin as standard.

Chitinase activity assay: Methods of Tonon et al. (1998) were followed with a slight modification in enzyme concentration. Chitinase activity was determined based on the rate of N-acetylglucosamine production using chitin as the substrate. Amount of enzyme catalyzing the formation of 1 nm N-acetylglucosamine equivalent in one second under assay conditions refers as 1 nkat (Anfoka and Buchenauer, 1997).

β-1,3-glucanase activity assay: The β-1,3-glucanase activity assay methods of Tonon et al. (1998) were followed with a slight modification. β-1,3-glucanase activity determination was based on the rate of reducing sugar production using Laminarin (Sigma) as the substrate. Amount of enzyme catalyzing the formation of 1 nm glucose equivalent in one second under assay conditions refers as 1 nkat (Anfoka and Buchenauer, 1997).

Statistical analysis: Data were analysed using one-way ANOVA and the differences contrasted using Duncan's multiple range test. All statistical analyses were performed at 5% using SPSS 10.0 (SPSS Inc. USA).

RESULTS AND DISCUSSION

Evaluation of GFP and GUS constructs as reporter gene using co-bombardment: Co-transformation studies have important applications in the area of resistance breeding which are required for the development of a durable and
Fig. 1: Percentage of gfp gene expression (pGEM-Ubr1-Sgf7S65T) per bud obtained in different treatments. For each treatment, four replicates were used containing hundred single buds per replicate. Data were analysed using one-way ANOVA and the differences contrasted using Duncan’s multiple range test. Different letters indicate values are significantly different (p<0.05).

Fig. 2: Percentage of gusA gene expression (pMRC 1301) per bud obtained in different treatments. For each treatment, four replicates were used containing hundred single buds per replicate. Data were analysed using one-way ANOVA and the differences contrasted using Duncan’s multiple range test. Different letters indicate values are significantly different (p<0.05).

Fig. 3: Transient genes expression in single bud, two days after co-bombardment with antifungal genes. (A) Transient gfp (pGEM-Ubr1-Sgf7S65T) gene expression from Treatment 3, (B) Transient gusA (pMRC1301) gene expression from Treatment 2. All pictures were taken under 80X magnification using a stereomicroscope.

carried out (Table 1) together with GFP construct (pGEM-Ubr1-sgf7S65T), in which the antifungal proteins and the GFP plasmid were non-linked (all plasmids used contain nptII gene). Expression of gfp gene could be observed transiently beginning 48 h post-bombardment in all treatments (Fig. 1 and 3A).

The highest gfp gene expression could be detected in treatment 3 between week one and week two (Fig. 1). However, it decreased almost (50%) during week four. At week four, the highest expression could be detected in treatment 2 and the lowest in treatment 4. However, at week 5 and 6, GFP expression was the highest in treatment 1. These indicated that GFP regardless of targeted or not, could be expressed in banana tissue transiently in earlier stage and become stable at later stage of regeneration.
Table 3: Comparison of transformation frequency based on regeneration of putative plantlets obtained from five different treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Treatment 1</th>
<th>Treatment 2</th>
<th>Treatment 3</th>
<th>Treatment 4</th>
<th>Treatment 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Total buds bommbarded</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>b. Explants resistant in antibiotic selection using solid medium* (1st subculture)</td>
<td>180</td>
<td>153</td>
<td>163</td>
<td>131</td>
<td>147</td>
</tr>
<tr>
<td>c. Explants resistant in antibiotic selection using liquid medium* (2nd subculture)</td>
<td>74</td>
<td>86</td>
<td>75</td>
<td>78</td>
<td>64</td>
</tr>
<tr>
<td>d. Explants resistant in antibiotic selection using solid medium* (3rd subculture)</td>
<td>21</td>
<td>29</td>
<td>32</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>e. Plants regenerated in hormone free medium*</td>
<td>16</td>
<td>24</td>
<td>30</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>f. Transformation frequency (%)</td>
<td>4.00</td>
<td>6.00</td>
<td>7.50</td>
<td>3.75</td>
<td>6.75</td>
</tr>
</tbody>
</table>

*Contain genetin G-418 (50 mg L⁻¹) in 10 mg L⁻¹ of BAP, **Contain genetin G-418 (25 mg L⁻¹) in 5 mg L⁻¹ of BAP, ***MS medium without BAP

Transformation frequency (%) = Number of explants regenerated in hormone free medium (a)/total explants bombarded (a) × 100%

Under optimise conditions (Tian et al., 1997), Becker et al. (2000) reported stable transformation of Cavendish banana (Musa spp., AAA group) cultivar ‘Grand naine’ via particle bombardment with a construct carrying gfp reporter gene under control of the 35S promoter and the nptII gene under control of a novel promoter derived from Banana Bunchy Top Virus (BBTV).

Expression of gusA gene could be observed transiently beginning 48 h post-bombardment in treatment 2 and 4 (Fig. 2 and 3B). Highest GUS expressions observed during week 2 in both treatments (treatment 2 (65%) and treatment 4 (55%)). It could due that the gene requires two days for it to express in a new environment from the injuries inflicted by scalpels and blasting conditions. Higher gusA expression observed in treatment 2 compared to treatment 4 throughout six weeks of observations (Fig. 2). Similarly, GUS expressions had been observed on regenerated Multiple Bud Clumps (MBCs), shoots, leaves and roots (Fig. 5) under genetin G-418 selection. However, no continuous GUS expression could be detected after four months in regenerated plantlets.

Though both markers are useful, the gfp gene was more sensitive in following Pisang Rastali (AAB) transformation in transient assays. The number of buds testing positive for the GFP reporter is higher than that for the GUS reporter gene. Furthermore, in buds that tested positive for either reporter (treatment 2 and 4), the number of spots with GFP expression typically is several times higher that seen with the GUS construct, indicating the greater sensitivity of detection of the gfp gene product (Fig. 1 and 2).

Selection of stable transformation: Selection was carried out on bombarded single buds on MS medium consisting of 10 mg L⁻¹ of BAP containing genetin G-418 at 50 mg L⁻¹, during a period of 4 to 8 weeks (Fig. 4). However, none of the negative control plates did ever give rise to surviving cell aggregates under any of the selective conditions used in this experiment. In the absence of antibiotics, uninfected single buds proliferated normally on 10 mg L⁻¹ of BAP, whereas they turned to black and died after two months under selection condition even at the lower concentration tested. Percentage of transformation frequency was evaluated based on the number of buds regenerated from the total number of buds bombarded. However, regeneratin frequency was highly dependent based on different treatments (Table 3).

Particle bombardment with an equimolar mixture of two different plasmids pBI333-EN4-RCC2 and pROK1a-Eg

Fig. 4: Regeneration of transgenic Pisang Rastali (AAB) (A) Three months in genetin G-418 (50 mg L⁻¹) selection media; (B) Multiple shoots proliferating in 1 mg L⁻¹ of BAP concentration. The bar in the bottom of each of the image represents 2 cm
Fig. 5: Stable gfp gene expression in regenerating plantlets. (A) Control explant; (B) Single buds; (C) and (D) multiple bud clumps; (E) Stable gfp gene expression in transformed shoot and (F) Stable gfp gene expression in transformed root. Explants were viewed under a fluorescence microscope (Leica MZFL.111) equipped with GFP 2 filter. All pictures were taken under 40X magnification using a stereomicroscope.

(treatment 1) carrying two different antifungal protein gene (chitinase and β-1,3-glucanase) yielded in total of 180 explants resistant in antibiotic selection during the first phase (50 mg L⁻¹ of gentamicin G-418 in solid
Fig. 6: Stable gusA gene expression on regenerating plantlets from treatment 2 and 4. (A) Regenerated single bud; (B) Single buds regenerated into clump buds; (C) Stable gusA gene expression in transformed leaf; (D) Stable gusA gene expression in transformed root. All pictures were taken under 40X magnification using a stereomicroscope.

medium) and 140 explants during the second phase (Table 3). Only 5.25% (21/400) explants survived after third selection. For treatment 2 (pMRC130 and pROKla-Eg), a total of 153 explants resistant were selected during the first phase (50 mg L⁻¹ of gentamycin G-418 in solid medium) and 86 explants during the second phase. Only 7.25% (29/400) explants survived after third selection (Table 3). However, some of regenerated plantlets turned black in both treatments. Transformation frequency is lower in treatment 1 (4%) compared to treatment 2 (6%).

Transformation frequencies of the regenerated plantlets for these single plasmid transformants (treatment 3, 4 and 5) were in the same range as those for double co-transformants (Table 3). So, the presence of another plasmid did not have an effect on the transformation frequencies of individual transgenes. Highest transformation frequency obtained from treatment 3 (7.50%) and the lowest from treatment 1 (4%). Factors that cannot be controlled completely but that probably contributed to this large variation include the competence for transformation of the single buds at the time of bombardment, the degree of aggregation of the coated gold particles and precise targeting of single buds.

Interestingly, GFP expressions had been observed on regenerated multiple bud clumps (Mbc), shoots, leaves and roots (Fig. 4) under gentamycin G-418 selection. Several studies have used GFP as a selection agent in order to improve transformation efficiency in plants (Elliot et al., 1999; Vain et al., 1998). In this study, GFP fluorescence together with gentamycin G-418 was used to increase the accuracy and predictability of the banana selection process.

It has been reported that gene expression might decrease or be lost in the progeny of transgenic plants after several generative multiplication cycles or even with
ageing of the plant (Comejo et al., 1993). All independent lines from five treatments were analysed for GFP and GUS (treatment 2 and 4) expressions (Fig. 5 and 6). Of the three plantlets tested from treatment 1, two (expression frequency of 67%) and one (expression frequency of 33%) developing bright green fluorescent in leaf and root tissues, respectively. Expression of GFP in regenerated was visually confirmed at the time of multiple bud clumps formation, shoot initiation, rooting and leaves (Fig. 5). Although GFP expression could be visually detected in all tissues, it was strongest in tissue containing only low amounts of chlorophyll such as cell cultures, meristematic regions, young plant tissues and reproductive structures of banana plantlets. From treatment 2, three (expression frequency of 75%) and one (expression frequency of 25%) expressed gfp gene in leaf and root tissues. However, GUS expression was slightly lower than GFP. Two plantlets (expression frequency of 50%) expressed gusA gene both in leaf and root tissues. For treatment 3, three (expressing frequency of 75%) and one (expression frequency of 25%) expressed gfp in leaf and root tissues. Both plantlets tested from treatment 4 (expression frequency of 50%) expressed gfp and gusA genes expression in leaf and root tissues, respectively. For treatment 5, one (expression frequency of 25%) and two (expression frequency of 50%) expressed GFP in leaf and root tissues.

No loss of GFP and GUS expressions was observed in transgenic in vitro leaf and root tissues at least three subcultures on selection medium. Thus, the gfp and gusA genes were not only transmitted but also stably expressed during vegetative multiplication in vitro. Regeneration of plants from transgenic tissue expressing GFP has been demonstrated in several different plants (Pang et al., 1996; Kohler et al., 1998), indicating that GFP has little impact on normal development embryonal cell. As the plantlets developed, GFP fluorescences were best visualized at the vascular tissue and root (Fig. 5E and F). Non-transgenic material at this stage fluoresced light red and was easily distinguished from the light to bright green of the transgenic plantlets. As the leaves developed and matured, the green fluorescence was less apparent and may have been masked by the increased red auto-fluorescence of chlorophyll. A similar observation was reported in sugarcane Elliot et al. (1999). However, when the in vitro banana plant was at the end of its vegetative stage, it was difficult to differentiate between the leaves of the transgenic and non-transgenic as the result of the reddening of the GFP leaves by increased chlorophyll biosynthesis.

An extensive histochemical GUS analysis was carried out on different tissues of GUS expressing transformants from treatment 2 and 4 to determine if promoter regarded constitutive (rice Act 1).

When GUS expression was detected in leaf tissue of in vitro plantlets [Plant code: R1T2 (11) and R3T4 (7)], it was also found in all other tissues tested including the meristematic part and root hairs (Fig. 6). Staining of the meristem clearly demonstrated that plantlets were fully transformed and no chimaeric tissue was formed, although a uniform blue staining was not always observed in all tissues. Two types of GUS expression patterns in leaf tissue of plant code R1T2 (11) and R3T4 (7) can be distinguish. First, GUS expression was restricted to the leaf veins and midrib tissues (Fig. 6C). However, this expression pattern is not unusual to CaMV 3SS promoter which is highly active in vascular tissue (Araki et al., 1998). Furthermore, it indicated that little or no GUS enzyme seemed to leak from GUS-expressing cells present in the veins into neighbouring cells, which rendered the histochemical assay useful for localization of GUS expression in banana leaf tissue. The variation in GUS expression could be explained by the existence of chimeras comprised of a mixture of transformed and untransformed cells, as been reported in transgenic chrysanthemum (Teixeira da Silva and Fukai, 2003).

The second type of GUS expression pattern uniform as all cells of the leaf tissue including those of the lamina stained blue, while non-transformed controls were never positive. Without wounding, the X-Gluc solution did not fully penetrate and leaf disc did not stain completely blue, allowing misinterpretations of GUS expression. GUS expression was also present in longitudinal sections and root hairs of the main roots of transformants (Fig. 5D). The GUS and GFP expressions regarded constitutive in roots which is significantly important in developing transgenic banana tolerance to root attacking fungus such as Fusarium oxysporum. However, GUS expression in independent transformants could vary from confined to the leaf veins or root cylinder to a more uniform including all cells. The gusA gene driven by the 3SS promoter was expressed in all parts of transgenic rice, but various degrees of GUS expression were measured (fluorometrically) in different organs with highest expression in roots (Peng et al., 1992). Histochemical localization of GUS activity controlled by the rice Act1 promoter equally active in all banana tissues like in cereals (maize: Zhong et al., 1996b; wheat: Nehra et al., 1994) or primarily in root meristems like in Gladiolus (Kamo and Blower, 1999).
PCR analysis of transformants: PCR analysis was performed to confirm the presence of introduced gene(s) in putatively transformed plants. Genomic DNA extracted from *in vitro* banana plantlets derived from histochemical expressions of GFP or GUS (treatment 2 and 4) positive and genetin G-418 resistant single buds.

Thirty six DNA samples of resistant plantlets were picked from five treatments were subjected to PCR analyses. Figure 7-12 showed the results of PCR amplification with six different sets of primers of the *gfp*, *gus4*, chitinases (*RCC2* and *Chi*), β-1,3-glucanase (*Eg*) and *npt11* genes. In all experiments, no bands were detected from the untransformed samples. Below is the summary of PCR results obtained from each treatment.

Treatment 1 (pBI333-EN4-RCC2 + pROKl-Eg): Two [Plant code: R2T1 (19) and R3T1 (7)] of eight samples
for the gfp gene (Fig. 7: Lane 4 and 5), 789 bp for the gusA gene (Fig. 8: Lane 2, 3, 4 and 5), 486 bp for the chitinase gene (Chi) (Fig. 10: Lane 3, 4, 5, 6, 7, 8 and 9), 830 bp for the β-1,3-glucanase gene (Fig. 11: Lane 7 and 8) and 900 bp for the nptI gene (Fig. 12: Lane 4 and 5).

Treatment 3 (pBL333-EN4-RCC2): One [Plant code: R2T3 (Y10)] of eleven samples assayed successfully amplified the expected band size of 726 bp for the gfp gene (Fig. 9: Lane 6). Meanwhile, plant R2T3 (Y10) and R2T3 (Y11) amplified 310 bp for the chitinase gene (Fig. 9: Lane 7, 8 and 11).

Treatment 4 (pMRC1301): One [Plant code: R3T4 (7)] of seven samples assayed successfully amplified the expected band size of 789 bp for the gusA gene (Fig. 8: Lane 6 and 7), 486 bp for the chitinase (Chi) gene (Fig. 10: Lane 10 and 11).

Treatment 5 (pROKla-Eg): One [Plant code: R2T5 (42)] of five samples assayed successfully amplified the expected band size of 830 bp for the β-1,3-glucanase gene (Fig. 11: Lane 9, 10 and 11) and 900 bp for the nptI gene (Fig. 12: Lane 6).

Genomic Southern blot hybridisation analysis: The genomic DNA was digested with HindIII, a unique cleavage site in the transgene used to estimate the number of insertion sites and hybridized with transgene specific probes. For Treatment 2 and 4 with the presence of pMRC1301, double digestions were performed using similar conditions with NheI and KpnI (gusA gene) and HpaI and KpnI (chitinase gene). Southern blot analysis of transgenic plants revealed a set of unique and complex hybridization bands for each of the four transgenes {gusA (treatment 2 and 4), chitinases (RCC2 and Chi) and β-1,3-glucanase (Eg)}, indicating random integration of foreign DNA. Southern blots of PCR positive plantlets from five treatments with each representing a different transgene (Fig. 13, gusA gene; Fig. 14, RCC2 gene, Fig. 15, Chi gene and Fig. 16, Eg gene). Below is the summary of DNA analysis from Southern blots results characterised from each treatment.

Treatment 1 (pBL333-EN4-RCC2 + pROKla-Eg): Two copies were found in each plantlet [Plant code: R2T1 (19) and R3T1 (7)] for RCC2 and Eg genes (Fig. 14: lane 2, 3 and 4, Fig. 16: lane 3, 4, 5 and 6). Each of the sample from two plantlets successfully hybridized the expected band size of 1.4 bp for the RCC2 gene and 3.5 bp for the β-1,3-endoglucanase gene. The results obtained indicated
co-transformation of both transgenes into the banana genome successful. No signals were detected in the negative control.

Treatment 2 (pMRC1301 + pROKla-Eg): Multiple copies (three to four copies each transgene) was found in one of the two plantlets from treatment 2 [Plant code: R1T2 (11)] for Chi gene (Fig. 15: lane 4). Except one copy of Chi transgene obtained with the expected band size of 3.3 bp from plantlet treatment 2 [Plant code: R3T2 (24); lane 5, 6, 10 and 11]. However one copy of β-1,3-endoglucanase and gusA transgenes obtained from plantlets with this treatment (Fig. 16: lane 7, 8, 9 and 10) and gusA (Fig. 13: lane 2, 3, 4 and 5) with the expected band size of 3.5 and 3.0 bp. The results obtained indicated co-transformation of both transgenes into the banana genome successful in treatment 2 with strong bands especially for chi transgene. This probably indicates that multiple copies of the transgene had integrated into the same loci as containers in the genome.

Treatment 3 (pBI333-EN4-RCC2) Two copies were found in each plantlet [Plant code: B2Y (4) and B3Y 911)] for RCC2 transgene (Fig. 14: lane 5, 6, 7 and 8). Each of
Table 4: Chitinase enzyme activity in transgenic Pisang Rastali (AAB) plantlets transformed with chitinase gene (RCC2 and Chi)

<table>
<thead>
<tr>
<th>Plant code</th>
<th>Chitinase activity (1 nkat/μg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2T1 19</td>
<td>54.2±8.3</td>
</tr>
<tr>
<td>R3T1 7</td>
<td>48.2±3.2</td>
</tr>
<tr>
<td>R2T2 11</td>
<td>46.4±2.4</td>
</tr>
<tr>
<td>R2T2 24</td>
<td>41.4±4.4</td>
</tr>
<tr>
<td>R2T3 Y10</td>
<td>38.3±4.4</td>
</tr>
<tr>
<td>R2T3 Y11</td>
<td>36.4±3.3</td>
</tr>
<tr>
<td>R3T4 7</td>
<td>11.4±4.1</td>
</tr>
<tr>
<td>Control</td>
<td>12.9±1.8</td>
</tr>
</tbody>
</table>

*One unit of chitinase activity: The amount of enzyme catalyzing the formation of 1 μmol N-acetylglucosamine equivalent in one second under assay conditions refers as 1 nkat. Three replications were used for the assay to calculate the average activity. Control: Untransformed Pisang Rastali (AAB)

Table 5: β-1,3 glucanase enzyme activity in transgenic Pisang Rastali (AAB) plantlets transformed with β-1,3 glucanase gene (Eg)

<table>
<thead>
<tr>
<th>Plant code</th>
<th>β-1,3 glucanase activity (1 nkat/μg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2T1 19</td>
<td>31.3±6.2</td>
</tr>
<tr>
<td>R3T1 7</td>
<td>31.2±6.9</td>
</tr>
<tr>
<td>R2T2 11</td>
<td>25.5±2.7</td>
</tr>
<tr>
<td>R2T2 24</td>
<td>26.8±2.6</td>
</tr>
<tr>
<td>R2T2 42</td>
<td>19.9±2.2</td>
</tr>
<tr>
<td>Control</td>
<td>10.1±1.8</td>
</tr>
</tbody>
</table>

*One unit of β-1,3 glucanase activity: The amount of enzyme catalyzing the formation of 1 nmol glucose equivalent in one second under assay conditions refers as 1 nkat. Three replications were used for the assay to calculate the average activity. Control: Untransformed Pisang Rastali (AAB)

The β-1,3 glucanase activity was assayed by measuring the rate of reduction of sugar production with laminarin as substrate. The β-1,3 glucanase activity in the whole plants of R2T1 (19) (treatment 1), R3T1 (7) (treatment 1), R1T2 (11) (treatment 2), R3T2 (24) (treatment 2) and R2T5 (42) (treatment 5) was measured (Table 5). The β-1,3 glucanase enzyme activity level was higher in transgenic plants than in the control plants.

The β-1,3 glucanase activity of R2T1 (19) and R3T1 7 (treatment 1) was four fold higher than untransformed plantlet (Table 5). The β-1,3 glucanase activity of R1T2 (11) and R3T2 (24) (treatment 2) was 2 to 3 fold higher than untransformed plantlet. The lowest β-1, 3 glucanase activity detected in plant code R2T5 (42) of treatment 5 with only two fold higher than untransformed plantlet. The co-expression of two antifungal genes increased β-1,3 glucanase activity in transformants compared with single β-1, 3 glucanase gene insertions from treatment 5. However, the β-1,3 glucanase activity from treatment 1 and 2 is lower than chitinase activity.

CONCLUSIONS

Co-transformation of chitinase and β-1,3-glucanase genes was successfully carried out. Stable gusA and gfp genes expression were detectable in transformed single buds, shoots, multiple bud clumps, leaves and roots were successfully obtained. Integrative of the transgenes and stable of this system were assessed by PCR amplification of 726 bp of gfp gene, 789 bp of gusA gene, 310 bp of RCC2 (chitinase) gene, 486 bp of Chi gene (chitinase), 830 bp of Eg gene (β-1,3-glucanase), and 900 bp of nptII gene. Genomic Southern blot hybridization confirmed the incorporation of the RCC2, Chi and Eg genes in host genome between one and five inserted copies. Chitinase and β-1,3-glucanase enzyme activities of transgenic plantlets obtained from particle bombardment was higher than untransformed plantlets. In addition, co-bombardment of chitinase and β-1,3 glucanase genes (Treatment 1 and 2) gave a higher enzyme activity compared with single gene insertion (Treatment 3, 4 and 5). The above transformation
Fig. 17: Production of transgenic Pisang Rastali (AAB) (A) Putative transgenic plantlets confirmed from PCR and Southern blot analyses; (B) Transgenic banana in the glasshouse

technology has a great potential for molecular improvement of banana especially to tolerance Fusarium wilt disease. Experimental are now in progress to assay for the tolerance of transgenic banana against Fusarium oxysporum (race 1) exposure in potted plants in the glasshouse (Fig. 17).

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Yokoshiwa from National Institute of Agrobiological Resources for generous gifts of a RCC2 (rice chitinase), Dr. Ruslan Abdullah from Universiti Kebangsaan Malaysia (UKM) for pMRC 1301 (rice chitinase), Dr. Yoji Takeuchi from Hokkaido University, Japan for pROKls-Eg (soybean β-1,3-glucanase) plasmid and Dr. Adrian Elliot for pGEM Ubi-sgp/S65T plasmid. This research supported financially by The Ministry of Science, Technology and Environmental through the PR project (01-02-04-0060-PR0010/041).

REFERENCES

