The Use of Locus Specific Microsatellite Markers for Detecting Genetic Variation in Hatchery bred Probarbus jullienii

Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
Freshwater Fisheries Research Center, 71650 Glami Lemi, Jebebu, Negeri Sembilan, Malaysia
Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia

Abstract: This study is to demonstrated that microsatellites markers developed for Tor tambroides can be used to amplify microsatellite loci in other family. It is assumed that microsatellite loci are more conserved for aquatic species compared to terrestrial ones due to aquatic environments are less mutagenic than terrestrial ones. Development of microsatellites still requires investment of time and resources. Thus using loci already developed in a related species may provide a cost-effective alternative to microsatellite isolation and development in a species of interest in present study, Probarbus jullienii. In this study we investigated the possibility of the conservation of microsatellite flanking regions among different species. Nine pairs of SSR primers, five gave very strong banding profile (SYK1, SYK 2, SYK 5 SYK 8 and SYK 9) which could be used for population studies by using the nested protocol. Results showed that SYK 2 and SYK 9 flanked the same (CA)n repeats and thus are highly conserved in a different species. The products of the SYK 5, 8 and 1 primer pairs showed differences in the microsatellite regions which they flanked in Probarbus jullienii when compared to those of the source species, Tor tambroides. The mean observed heterozygosity levels for all the primers ranged 0.23-0.81. The primers are all polymorphic with the mean number of alleles from 2-5.

Key words: Cross amplifications, Probarbus jullienii, microsatellites

INTRODUCTION

There are nearly 700 fish species in Malaysia, the conservation status of them are not exactly known. Probarbus jullienii is a fish species found in the rivers of Peninsular Malaysia. The International Union for the Conservation of Nature and Natural Resources Red Data Book lists P. jullienii as endangered prompting conservationists to plan some conservation programs to rescue this species. Malaysia has imported 200 juveniles from Thailand in the late 80s and has been breeding P. jullienii in captivity since then. Conservation of genetic resources is an essential component of many species management programmes (Templeton, 1994; O’Connell and Wright, 1997). Hatchery-enrichment can potentially reduce the genetic diversity of natural stocks. An effective strategy for the conservation and restocking of a particular species is documenting its genetic make up in hatchery bred and non indigenous stocks to compare levels of genetic variation. Aquaculture practices may decrease the genetic variability present in farmed stocks by breeding among related individuals and use of small numbers of founding broodstock (Thai et al., 2007). Thus breeding programs may deliberately introduce divergent stocks and utilize crossbreeding programs to decrease diversity and productivity (Hulata, 1995). The ongoing development of a restocking program that had been initiated requires greater understanding of the genetic status of domesticated stocks. To this end, an initial study of genetic variation within and among populations using morphological and molecular markers showed that in Malaysia currently there are two distinct populations of Probarbus jullienii, those of Thai origin and the indigenous wild stocks. However, the degree of differences between these two populations showed that they belong to the same species. The resolving power of their genetic composition need to be evaluated further by using the more informative polymorphic microsatellite loci (Bhassu et al., 2008). Microsatellites’ potential applications in aquaculture include monitoring changes in genetic variation as a consequence of different breeding strategies, the investigation of interactions between wild and cultured populations, parentage assignment and estimation of relatedness between potential breeding pairs (Cross, 2000; Cross et al., 2005; Davis and Hetzel, 2000; Liu and Cordes, 2004; Norris et al., 1999).

Corresponding Author: Subha Bhassu, Department of Genetics and Molecular Biology, Institute of Biological Sciences, Universiti Malaya, 50403 Kuala Lumpur, Malaysia

166
Microsatellites or Simple Sequence Repeats (SSRs) are DNA segments in the genome that consist of a concatenation of very short sequence of nucleotides. Microsatellite segments consist of about 10-50 repeats of 2-6 nucleotides. (Weissenbach et al., 1992). Because of their codominant inheritance, relatively high level of polymorphism and ease in analysis using Polymerase Chain Reaction (PCR), microsatellites (SSR) have been considered as a valuable molecular tool in genetic studies such as in the management and conservation of endangered species (Weber and May, 1989; Tautz, 1989). However, development of microsatellites still requires investment of time and resources. Thus, using loci already developed in a related species may provide a cost-effective alternative to microsatellite isolation and development in a species of interest. Cross-species amplification is only effective if primer sequences are conserved between species (Moor et al., 1991; Peakall et al., 1998). In this study, specific primers that have been developed for Tor sp. was applied in this Probarbus jullieni population. If these primer pairs were found conserved among different species, the microsatellite loci developed will be very useful in the population studies of various species. Thus, in this study, we investigated the possibility of the conservation of microsatellite flanking regions among different species and that these primer pairs are indeed flanking microsatellite sequences.

MATERIALS AND METHODS

DNA extraction: All the fish used were reared in the Fisheries Research Extension Center in Perlok, Pahang, Malaysia where they are maintained as broodstocks for breeding and further possible restocking program. One scale was removed and stored in 70% ethanol and later kept at -80°C. Genomic DNA from scales of Probarbus jullieni was extracted following the protocol recommended for the QIAamp DNA Mini Kit (Qiagen, Germany). The absorbencies of each of the extracted DNA sample were measured at 260 and 280 nm using a spectrophotometer to check on its quality and purity.

PCR optimization: The SYK primers (Bhassu et al., 2008) were designed and synthesized for microsatellite DNA amplification of the masher fish, Tor tambroides. The initial PCR was carried out in a final reaction volume of 10 µL containing 1x Promega reaction buffer, 1.5 mM MgCl₂, 200 mM each of dATP, dGTP, dCTP, dTTP, 1 U Promega Tag polymerase, 10 pmol of each oligonucleotide primer, 50 ng template. De-ionised distilled water was added to a final volume of 10 µL. The amplification was performed by using an Eppendorf Mastercycler Gradient thermocycler programmed 3 min for pre-denaturation at 95°C followed by 35 cycles of denaturation at 94°C for 30 sec and annealing at 58°C for 40 sec and extension at 72°C for 45 sec and a final extension at 72°C for 7 min. The electrophoresis of the PCR products was done on 4% metaphor gel at 75 V. The gels were stained with 0.5 µg L⁻¹ ethidium bromide in water and visualized under ultraviolet light. The results are shown in Fig. 1.

A touchdown protocol was then used in an effort to generate clear and distinct PCR bands. The PCR reaction contained the following components in 10 µL final volume: 1x Promega reaction buffer, 1.5 mM MgCl₂, 200 mM each of dATP, dGTP, dCTP, dTTP, 1 U Promega Tag polymerase, 10 pmol of each oligonucleotide primer, 50 ng template. De-ionised distilled water was added to a final volume of 10 µL. The amplification was performed by using an Eppendorf Mastercycler Gradient thermocycler programmed 3 min for pre-denaturation at 95°C followed by 20 cycles of denaturation at 94°C for 30 sec and annealing at 58°C for 1 min and extension at 72°C for 1 min and then another 20 cycles of denaturation at 94°C for 30 sec and annealing at 61°C for 1 min and extension at 72°C for 7 min. This was followed by electrophoresis of the PCR products on 4% metaphor gel at 75 V. The gels were stained with 0.5 µg L⁻¹ ethidium bromide in water and visualized under ultraviolet light. The size of the microsatellite alleles was determined by using a 20 bp DNA ladder. The results are shown in Fig. 2. The clear bands were extracted from the gel by using the QIAquick PCR Purification Kit and were then sent for sequencing. The sequences of the microsatellites are shown in Table 1.
Table 1: Characteristics of *Tor tambroides* microsatellites in *Probarbus jullieni*, including GeneBank Accession number (*T. tambroides*), primer sequence, repeat sequence, annealing temperature (T\text{a}), expected size (bp) (*T. tambroides*) and size range (bp) (*P. jullieni*).

<table>
<thead>
<tr>
<th>GeneBank accession No. (T. tambroides)</th>
<th>Repeat sequence (T. tambroides)</th>
<th>Repeat sequence (P. jullieni)</th>
<th>T\text{a} (°C)</th>
<th>Expected size (bp) (T. tambroides)</th>
<th>Size range (bp) (P. jullieni)</th>
<th>Observed heterozygosity (Ho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYK 1 EF472538</td>
<td>(CA)\text{\textsubscript{n}}</td>
<td>(GAA)\text{\textsubscript{n}}(GT)\text{\textsubscript{n}}(AA)\text{\textsubscript{n}}(AG)\text{\textsubscript{n}}</td>
<td>58/61</td>
<td>214</td>
<td>255</td>
<td>0.65</td>
</tr>
<tr>
<td>SYK 2 EF472538</td>
<td>(CA)\text{\textsubscript{n}}</td>
<td>(CA)\text{\textsubscript{n}}</td>
<td>58/61</td>
<td>164</td>
<td>177-200</td>
<td>0.60</td>
</tr>
<tr>
<td>SYK 5 EF472544</td>
<td>(TC\text{\textsubscript{n}}(TGT))\text{\textsubscript{n}}</td>
<td>(GA)\text{\textsubscript{n}}(GAA)\text{\textsubscript{n}}</td>
<td>58/61</td>
<td>244</td>
<td>242-217</td>
<td>0.23</td>
</tr>
<tr>
<td>SYK 6 EF472548</td>
<td>(TG)\text{\textsubscript{n}}</td>
<td>None</td>
<td>58/61</td>
<td>232</td>
<td>-</td>
<td>0.25</td>
</tr>
<tr>
<td>SYK 7 EF472541</td>
<td>(AC\text{\textsubscript{n}}(CT))\text{\textsubscript{n}}</td>
<td>None</td>
<td>58/61</td>
<td>239</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SYK 8 EF472553</td>
<td>(CA\text{\textsubscript{n}}(AC)\text{\textsubscript{n}}(CC)\text{\textsubscript{n}}(CA))\text{\textsubscript{n}}</td>
<td>(CA)\text{\textsubscript{n}}(GA)\text{\textsubscript{n}}(GA)\text{\textsubscript{n}}(AC)\text{\textsubscript{n}}</td>
<td>58/61</td>
<td>216</td>
<td>220-238</td>
<td>0.23</td>
</tr>
<tr>
<td>SYK 9 EF472553</td>
<td>(TG)\text{\textsubscript{n}}</td>
<td>(TG)\text{\textsubscript{n}}</td>
<td>58/61</td>
<td>214</td>
<td>216-280</td>
<td>-</td>
</tr>
</tbody>
</table>

T\text{a}: Annealing temperature

Fig. 2: PCR banding profile after optimization with the nested protocol

![Fig. 2: PCR banding profile after optimization with the nested protocol](image)

Genomic DNA

5' - CGTACGGTAGATCGTAGTACGCACACACACACACACACACACACGGCTGGT

ATAGCTAGTG...
pairs in Probarbus jutilieni. However, no microsatellite sequences were flanked by SYK 6 and SYK 7 in Probarbus jutilieni even though they flanked microsatellite repeats in Tor tambroides. When blast analysis was performed on all the SKY primers studied with the NCBI database, it was found that two primers SYK 1 and SYK 8 flanked microsatellite regions which are located on chromosome 1 of Danio rerio (Table 2) and the region of interest has an important role in host antiviral defense since the dinucleotide microsatellite regions are located in the oligoribonuclease synthase I (OAS1) and ribonuclease L (RNASEL) innate immunity genes (Rios et al., 2007). The SYK 9 primer on the other hand flanked regions that code for Guanylate Cyclase Activating Proteins (GCAPs) which has a function in the regulation of the photoreceptor Guanylate Cyclase (GCs), expressed in the retina of Danio rerio fish (Imanishi et al., 2004). Thus, the cross amplifications of Tor tambroides primers in Probarbus jutilieni has indeed have saved a lot of time on the development of microsatellites and they can be used further in the population structure studies of hatchery bred stocks of the latter species.

A prerequisite for the amplification of microsatellite loci with the means of PCR is relatively expensive and time consuming, therefore isolation of microsatellites in different species may be applied other closely related species. It has been suggested that the successful amplification of microsatellite loci across species depends on the conservation of the priming sites within the flanking sequences (Weber, 1990). Therefore, the conservation of microsatellite primers in closely related species and slow evolution in the flanking regions permit cross-amplification (Moor et al., 1991). The conservation of sequences flanking the microsatellites had been reported by Rico et al. (1996) who proposed a conservation of the microsatellite flanking regions in fish over a period of about 450 million years.

The estimated values of the observed and expected heterozygosity for all the populations are valued from minimum 0.234.81 and latter from the minimum 012.48 in hatchery populations. The Fis statistics value showed the level of heterozygosity in a population the positive value indicates deficit of heterozygosity. Therefore, microsatellites as codominant and neutral genetic marker have been used to examination of genetic differentiation in many species, specially in aquaculture populations (Reilly et al., 1999) and routinely used on studies of population subdivision, parentage analysis and shallow phenetic relationships and possibly gene flow (Adams et al., 2004). It is shown that the microsatellites can be used for parentage analysis for this study.

CONCLUSION

The significance of this study is the demonstration that it is possible to cross amplify microsatellite primer pairs not only across species within the same genus but also between species that belong to different genera. As some of the SKY primers have been demonstrated to be located in the conserved exon regions it is likely that they will be present over many generations of breeding programs or hatchery operations unlike random markers which can be lost due to genetic drift in such systems which usually start with small founder populations. Hence, they should be useful for parentage assignments at various stages of the breeding program or hatchery operation. This method is indeed efficient and cost effective to obtain new microsatellites for species of interest. Evidence has shown that microsatellite flanking regions are highly conserved and can be amplified across species and even across taxa.

ACKNOWLEDGMENT

We would like to thank the Head of the Freshwater Fisheries Research Center, Tn Haji Rosly b. Hassan for financial support and constant encouragement throughout the research study.

REFERENCES

Rios, J.J., A.A. Perelygin, M.T. Long, T.L. Lear and A.A. Zharkikh et al., 2007. Characterization of the equine 2'-5' oligo adenylate synthetase 1 (OAS1) and ribonuclease L (RNASEL) innate immunity genes. BMC. Genomics, 8: 313-313.

