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ABSTRACT

This study tested the forecasting performance of Constant Elasticity of Variance (CEV) and
benchmark Black-Scholes (BS) option pricing model for pricing S&F CNX Nifty 50 Index options
of India. This study adopts a common method of evaluating the performance of an option pricing
model that involves calculating the error metrics, Percentage Mean Error (PME) and Mean
Absolute Percentage Error (MAPE). For the purpose of this research we used the Non-Linear Least
Square (NLLS) loss function to imply option-related parameters while estimating the structural
parameters that governs the underlying asset distribution purely from the underlying asset option
data and placed options in one of 15 moneyness-maturity groups. The optimal set of parameters is
then used to compute the models price. The prices are compared analytically by updating the
parameters of two models continuatiously by using cross-sectional option data almost every day.
Aim of this study 1s to first find cut parameters of two models analytically then to show that the
parameters of the models estimated from option prices can be used to produce reliable predictions
of the day-ahead relationship between option prices and index volatility. Constant, EKlasticity of
Variance model, introducing only one more parameter compared with Black-Scholes formula,
improves the performance notably in 9 out of 15 PME and 12 out of 15 MAPE moneyness-maturity
groups and also increases the stability of implied volatility. Therefore, with much less
implementational cost and faster computational speed, the CEV option pricing model can be a better

candidate than Black-Scholes model. JEL Classification: C01, C13, C52, Ch3, G17.
Key words: Call opticns, Chi-square, maturity, moneyness, MAFPE, PME, volatility

INTRODUCTION

Option pricing 1s one of the most important areas of modern finance. Black and Scholes (1973)
developed a model from which a closed-form solution for a European option price can be obtained.
Their model assumes that the volatility of returns is constant through time. However, the model
has certain well-known deficiencies. For example, when cahbrated to accurately price at-the-money
options the Black-Scholes model often misprices deep-out-of-the-money and deep-in-the-money
options. This model-anomalous behavior gives rise to what options professionals call volatility
smiles. A volatility smile is the skewed pattern that results from calculating implied volatilities
across a range of strike prices for an option series. This phenomenon is not predicted by the
black-scholes model, since volatility is a property of the underlying instrument and the same
implied volatility value should be observed across all options on that instrument. Volatility smiles
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are generally thought to result from the parsimonious assumptions used to derive the BS
model. Empirical evidence shows that the constant volatility assumption is inappropriate in
real market situations. The constant variance assumption has been tested and rejected in early
studies.

The one parameter in the Black-and-Scholes equation that can not be observed directly 1s the
volatility (g) of the underlying asset. The Black-Scholes model assumes that this volatility to be
constant aver the hfe of the option. Volatility is the most sensitive input parameter in pricing terms.
The constant volatility assumption of Black-Scholes (henceforth BS) was scon challenged.
Estimating the volatility 1s not a straightforward procedure. There are several approaches to get
information about volatility. The use of historical data is one way although volatility measured over
long terms might be quite different from the volatility observed during the lifetime of the option.
A more commonly used way 1s to measure implied volatility, This is dene by using the BS formula
backwards, taking present. option prices and calculating the volatility, option traders expect for the
future. This value is often referred to as the implied (or implicit) volatihty, since it is implied by the
option price. Under BS assumption, implied volatilities from options should be the same regardless
of which option is used to compute the volatility. However, this is not the case in practice. Implied
volatility appears to be dependent on option maturities as well as strike prices ((Glauche, 2001).

Therefore, a remedy for this shortcoming of the BS model is needed. The Constant Elasticity of
Variance (henceforth CEV) model introduced by Cox and Ross (1976) 1s an example. Rather than
assuming constant volatility, Cox expressed the wvolatility as a function of the price of the
underlying asset. In the study of MacBeth and Merville (1980), they compared the performance
of the BS and CEV models through simulations and real examples. Their results show that the CEV
model has a better performance, which underprices in-the-money call options and overprices
out-of-the-money call options. Although, the CEV model can be a better alternative to the BS
model, the estimation of parameters appears to be more difficult. National Stock Exchange (NSE)
of India is one of the largest stock exchange of Asia is also using benchmark Black-Scholes model
for fixing the base price of Nifty 50 index options. In this study our aim is te do the empirical
analysis of CEV and BS model to find the better alternate to minimize the price bias between
market and model price.

In this study, we estimate the parameters of the CEV model jointly by the method of
least-squares. An empirical study on the 5&F CNX Nifty 50 Index option is carried out to compare
the performance of the BS and CEV models. This study contributes to the volatility literature by
reporting direct estimates of the parameters of a true volatility process obtained as implied
parameters from observed option prices. The procedures followed here represent a substantial
generahzation of the widespread practice of obtaining an implied standard deviation from observed
option prices. In order to reduce the empirical biases of BS in 1973 option pricing model, succeeding
option pricing maodels relaxed the restrictive assumptions made by the BS model: the underlying
price process (distribution), the constant interest rate and dynamically complete markets. The
tradeoffis, however, more computational cost.

DATA DESCRIPTION

This investigation required the collection of historical data for the S&P CINX Nifty 50 index and
index option contract. Historical data of index options contract and the Indian risk-free interest rate
data which is equal to yield of 91 Day T-Bill collected from respective websites of National Stock
exchange (www.nseindia.com) and Reserve Bank of India (www.rbi.org). The data from January
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1, 2008 to December 31, 2008 collected for S&P CINX Nifty B0 Index Option. For the option contract:
the date, time, contract month, option type, strike price and traded prices were obtained. Data were
collected manually. For the purpose of this research we have considered daily data (option strike
prices for which number of contracts are non zero for trading days). The final set of data after
screening procedure contained 7455 call option.

Data screening procedure: All the call option prices taken from the market are checked whether
they satisfy the lower boundary condition:

S, —Ke™ ™ < (8,1 (1)

where, 8,1s the current asset price, K is the strike price, r is the risk-free interest rate and C(S, ,t)
is the call price at time t. If a call price from the market does not satisfy the lower boundary
condition, it is considered as an invalid observation and discarded. Very deep out-of-the-money and
very deep in-the- money opticns are not traded actively on NSE and their price quotes may not
reflect the true option value so we have excluded Data of moneyness greater than 15%. Option
strike prices having maturity greater than 90 days is less actively traded on NSE so we have
excluded options data having maturity period of greater than 90 days. Option strikes with less than
five days of maturity are also excluded amid liquidity related biases. The final data set contained
7455 call option.

Option categories: Fach market option price that remains after the screening procedure is placed
in one of 15 categories depending on their time to expiration and ratio of the asset price to the strike
price. Three ranges of time to expiration are distinguished:

+  Short maturity (0-30 days or below 1 months)
*+  Medium maturity (30 to 60 days or between 1 and 2 months)
+ Long maturity (60 to 90 days or between 2 to 3 months)

Unlike their price behavior because option prices are very sensitive to their exercise prices and
their times to maturity. We divide the option data into several categories according to either
moneyness or the time to maturity. A call option is said to be at-the-money (ATM) if the moneyness
is e {-B%, 5%), in-the-money (ITM) if the moneyness e (5%, 10%), out-of-the-money (OTM) if the
moneyness e (-10%, -5%) and deep in-the-money (DITM) if the moneyness is greater than 10% and
deep out-of-money (DOTM) if the moneyness is less than -10%.

Method: For this study we divided the option data into two categories according to moneyness and
time to maturity. Volatihty is the only unknown parameter in the BS model; the implied volatality
can also be used to justify the accuracy of the option-pricing model. We test the cut-of sample
forecast performance by comparing the one-day ahead forecasting accuracy of the CEV and BS
model with Market value. Models parameters is computed analytically by optimization techniques
and use as an input to figure out the effectiveness of the CEV model against benchmark
black-scholes model for pricing S&P CNX Nifty 50 index option contract with market value. This
study adopts a common method of evaluating the performance of an option pricing model that
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invalves calculating the error metrics FPercentage Mean Error (PME) and Mean Absolute
Percentage Error (MAPE). To see how well a model performs, we lock at the relative error
generated by the model.

Percentage Mean Error (PME)

k
PME = %E(Candel _ ClMarkEt )/ClMarkEt (2)

1=1

A negative relative error means that the model underprices the specific option, whereas a
positive relative error means that the model overprices the specific option.

Mean Absolute Pricing Error (MAPE)

MAPE = Mean [[C}* - =] 3)

where, CM is the predicted price of the option and C*™* is the actual price for observation i and
k is the number of observations.

If the relative error (expressed in percentage) is small, it means the model gives a good
approximation to the market. Conversely, if the relative error is big, then the model is considered
to be a poor approximation to the market.

OPTION PRICING MODELS

The BS option pricing model: The BS model hardly needs introduction. It is the most popular
option pricing model, due to its simplicity, closed-form solution and ease of implementation. The
Black and Scholes (1973) price at time t for a European call option with maturity at time t + T with
strike price K on a stock paying no dividends 1s:

C.. = SN(d,) ~ Ke "N(d,) (4)
where:

o _ ISR+ 0.507

1 G-\E

_ 2
g <MYKI=[=050%

2 O'Jt_

where, C denotes the price of a call option, 8 denctes the underlying Index price, K denotes the
option exercise price, t 1s the time to expiry in years, r is the risk free rate of return, N(d) is the
standard normal distribution function and o® is the variance of returns on the Index. In general,
the pricing relationships explained for options on stocks also apply to options on Index; including
the underlying assumptions concerning log normally distributed prices, perfect and continuous
markets and interest rate certainty.
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Similarly put option prices can be found with the formula:
P=Ke™ N(-dy) — S.N(-d,) (5)
where d, and d, are defined as above.

The Constant-Elasticity-of-Variance (CEV) option pricing model: The CEV model proposed
by Black (1975) and Cox and Ross (1976) is complex enough to allow for changing volatility and
simple enough to provide a closed form solution for options with only two parameters. The CEV
diffusion process also preserves the property of nonnegative values of the state variables as does
in the lognormal diffusion process assumed in the BS model (Lee and Chen, 1993). The early
research of the CEV model was conducted by MacBeth and Merville (1980) and Emanuel and
MacBeth (1982) to test the empirical performance and compared with the BS model.

An important issue in option pricing is to find a stock return distribution that allows returns to
stock and its volatility to be correlated with each other. There is considerable empirical evidence
that the returns to stocks are hetercscedastic and the volatility of stock returns changes with stock
price. Black (1975), Cox (1996) and Cox and Ross (1976) proposed the CEV model. The CEV model

assumes the diffusion process for the stock 1s:

ds = udt+ 8% %dz

and the instantaneous variance of the percentage price change or return, 0%, follows deterministic
relationship:

al(8,1) = 5i8E2 (6)

If p =2, prices are lognormally distributed and the variance of returns is constant. This is the
same as the well-known BS model. If <&, the stock price is inversely related to the volatility. Cox
ariginally restricted O<f<2. Emmanuel and MacBeth (1982) extended his analysis to the case >2
and discuss its properties. However, Jackwerth and Rubinstein (2001) find that typical values of
the B can fit market option prices well for post-crash period only when <0 and they called the
model with <0 unrestricted CEV. In their empirical study, the difference of pricing performance
of restricted CEV model (f=0) and BS model is not significant.

The main feature of the CEEV model is that it allows the volatility to change with the underlying
price. The CEV closed-form pricing formula involving the evaluation of the non-central chi-square
distribution function and the analytic approximation method using the standard normal
distribution function are only for Kuropean options, which can only be exercised at maturity and
not, for American options, which can be exercised earlier. The rationale behind the CEV model 1s
that the model can explain the empirical bias exhibited by the BS model, such as the velatility
smile. The option pricing formula when the underlying process follows the CEV model is derived
by Cox and Ross (1976) and the formula is further simplified by Schroder (1989).

Schroder (1989) shows that the CEV option pricing formula can be expressed in terms of the
noncentral chi-square distribution functions. In this study, the CEV formula in terms of the
noncentral chi-square distribution expressed by Schroder (1989) and Dyrting (2004) is adopted to
compute option prices. Schroder (1989) expressed the CEV call option pricing formula in terms of
the noncentral chi-square distribution:
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When (<2,
C=8Q(2y;2+ 242 P),2x) — e K- Q(2x; 2+ 22 - B)2y)) (7)
When [>2,
C=8Q(2x;2+ 242 B),2y) — e K- Q(2y:2 + 2/{2 — B),2x)) (8)

(z,v k) 1s a complement ary noncentral chi-square distribution function with z, v and k being
the evaluation point of the integral, degree of freedom and noncentrality, respectively, where:

2r
TR HE D)

x = kS Per@-Pe
t
v =kK*P

where, C 1s the call price; 5, the stock price; 1, the time to maturity; r, the risk-free rate of interest;
K, the strike price and B and 8, the parameters of the formula,

Although, the CEV formula can be represented more simply in the terms of noncentral chi-
square distributions that are easier to interpret, the evaluation of the infinite sum of each
noncentral chi-square distribution can be computationally slow when neither z or k are too large.
This study uses the approximation derived by Sankaran (1863) to compute the complementary
noncentral chi-square distribution Q(2z,2v,2k) when z and k are large as follows:

1-hp[l-h+0.5(2 - hmp]-[z/(v + K" )
hJZp(l +mp)

Qlzv.k)~

where:
h=1-(2/3%v + K}y + 3K)(v + 2k}

_v+zik
P {v+ky

m=(h 1)1 -3h)

When neither z or k are too large (i.e., 2<200 and k<200 and no underflow errors cccur), the
exact CEV formula is used. Ctherwise, the approximation CEV formula is used.

STRUCTURAL PARAMETER ESTIMATION PROCEDURE
The BS implied volatilities are extracted using the BS formula. This must be done numerically
because the formula cannot be solved for o in terms of the other parameters. If o, denotes the
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implied volatility, C, (K, T) denotes the observed ecall price with strike price K and time to maturity
T and Cgilo K, T) denotes the BS price of the call with same strike price and maturity, then o, is
the value of volatility in the BS formula such that C (K, T) = Cglo,,,K, T). To find implied

volatilities numerically, the objective function f {(0) 1s defined by the squared loss function:

obs

fio)= Il'](}lni [CDES,i(KaT) - CBS,i (G)]z (10)

The deterministic volatility process assumed by CEV has two parameters f and & that must be
estimated. We estimate these parameters using a simultaneous equations method based on
minimizing the following sum of squares.
ul 2
I%liBnZ [CMarket,] —Copy (B, 8)] (11

1

Above steps results is an estimate of the implied spot variance and the structural parameter
values, for date t. Go back to Step 1 until the two steps have been repeated for each day in the
sample. These out-of-sample parameter values are then used to calculate theoretical option prices
for all option price observations. We then compare these theoretical option prices of every model
with their corresponding market-observed prices.

EMPIRICAL RESULTS

In this section, we report the empirical comparison of model performances based on implied
volatility stability and out-of-sample forecasting performance in Table 1.

The CEV parameter B is generally less than two for the entire sample, which explains the
empirical evidence for the negative relationship between the sample variance of returns and stock
price. CEV model under prices short term OTM, ATM, I[TM and DITM eall options and medium term
DOTM call options while overprices short term DOTM cptions. On the other side, BS model over
prices medium and long term OTM and DOTM call options and under prices short term DOTM,
OTM, ITM and DITM call options. It also overprices long term call options for all moneyness groups
with percentage mean error in between 4-9%. For CEV model degree of pricing bias is least for
medium term OTM, ATM, ITM and DITM options. CEV maodel, intreducing only one more
parameter compared with BS formula, improves the performance notably in most of the out-of-
sample moneyness-maturity price and implied volatility category. The CEV option pricing model
performs better than the BS model in 9 out of 15 FPME moneyness-maturity groups and 12 out, of
15 MAPE moneyness-maturity groups. In terms of model misspecification, the volatility of CEV
model is ranging between 26% and 34% in all maturity. For those options with less than 60 days
to expiration, the volatility of CEV model is more stable than BS models. For longer-maturity
options, the volatility smile of the CEV model 1s lower to BS model and stable compared to BS with
around 6% fluctuation. The prices generated by the CEV model appears to be a very good
approximation for ITM and ATM options of short and medium maturities, with relative errors
between -5% and +2%.

Earlier empirical investigations of MacBeth and Merville (1979), Beckers (1980), Emmanuel
and MacBeth (1982), Lee ef al. (2004) and Lu and Hsu (2005) has reported results similar to us,
stability of implied volatility and cut performance of CKEV model in comparison to BS model for
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Table 1: BS and CEV implied volatility, Percentage Mean Error (PME), Mean Absolute Pricing Error (MAPE) moneyness- maturity bias for call

option
Time to maturity
Implied volatility PME MAPE
Short Medium Long Short Medium  Long Short Medium Long
Moneyness Statistical term term term term  term term term  term term
(X=5K-1) Model value (T=30) (30=T=60) (T=60) Overall (T=«30) (30=T=60) (T=60) Overall (T=30) (30=Tz60) (T=60) Owverall
DOTM BS Average 0.39 0.39 040 039  -027 0.10 0.15 -0.10  6.36 13.58 26.26  11.01
(X=-0.10) sD 0.12 0.12 013 0.12 0.53 0.34 0.44 0.50 10.34 17.10 30.51 17.28
CEV Average 0.32 0.32 033 0.32 -0.47 -0.08 0.04 -0.28  6.19 10.54 20,06  9.19
SD 0.11 0.11 0.11 0.11 0.39 0.26 0.38 0.41 9.96 12.22 23.33 13.51
Total 772 491 153 1416 772 491 153 1416 772 491 153 1416
OTM BS Average 0.37 0.37 0.36 0.36 -0.07 0.10 0.11 0.02 8.75 1598 22.51 13.07
(-0.10<X=-0.05) SD 0.12 0.12 0.11 0.12 0.42 0.356 0.24 0.39 10.13 19.13 23.06 16.57
CEV Average 0.30 0.30 0.29 0.30 -0.21 0.01 0.06 -0.10 8.36 12.64 19.95 11.37
SD 0.10 0.11 0.10 0.10 0.34 0.30 0.21 0.33 9.25 1559 20.08 14.02
Total 938 632 235 1805 938 632 235 1805 938 632 235 1805
ATM BS Average 0.35 0.35 033 035 -003 0.00 0.07 -0.01 1424 16.78 2645  16.74
(-0.05:X<0.05) sD 0.11 0.12 009 011 0.17 0.11 0.50 0.23 15.86 21.8 3174  21.08
CEV Average 0.28 0.28 026 028 -0.05 0.00 0.09 -0.01  13.48 15.72 27.02 16.05
sD 0.10 0.10 008 010 015 0.10 0.48 0.22 14.97 20.31 30.84  20.12
Total 1697 1085 434 3214 1697 1085 434 3214 1697 1085 434 3214
I™ BS Average 0.36 0.37 0.38 0.36 -0.04 -0.01 0.00 -0.03 17.25 2076 34.26 19.03
(0.05<X<0.10) SD 0.12 0.12 0.10 0.12 0.05 0.07 0.10 0.06 19.65 20.23 26.85 20.35
CEV Average 0.29 0.30 0.31 0.30 -0.02 0.02 0.04 0.00 14.74 19.86 31.85 17.09
SD 0.10 0.11 0.09 0.10 0.06 0.07 0.09 0.06 17.97 20.99 27.05 19.72
Total 414 233 24 669 414 233 24 669 414 233 24 669
DITM BS Average 0.37 0.39 0.42 0.38 -0.03 -0.02 0.04 -0.02 17.75 1971 43.22 18.07
(X>0.10) sD 0.13 0.14 011 0.13 0.04 0.05 0.12 0.05 21.31 24.37 4419  23.44
CEV Average 0.30 0.32 034 0.31 -0.01 0.02 0.08 0.00 13.89 19.99 54.18 17.01
sD 0.11 0.12 010 0.11 0.04 0.05 0.12 0.05 19.17 22.81 39.3 22.11
Total 222 120 9 351 222 120 9 351 222 120 9 351
Overall BS Average 0.36 0.37 0.356 0.36 -0.09 0.04 0.09 -0.02 11.96 16.47 25.71 15.08
sD 0.12 0.12 011 012 0.34 0.25 0.42 0.33 15.14 20.4 2947 19.62
CEV Average 0.30 0.30 0.29 0.30 -0.16 -0.01 0.07 -0.08 11.05 14.54 24.23 13.76
SD 0.10 0.11 0.10 0.10 0.30 0.20 0.39 0.30 14.01 1833 27.32 17.99
Total 4043 2561 851 74556 4043 2561 851 7455 4043 2561 851 7455

pricing options on different indexes. Therefore, with much less implementational cost and faster
computational speed, the CEV option pricing model can be a better candidate than BS option
pricing model for pricing S&P CNX Nifty 50 index options.

CONCLUSION

This study uses the S and P CINX Nifty 50 index options to find the out-of-sample forecasting
performance of CEV and BS option pricing formula. We find that CEV option pricing formula
provides a significant improvement BS constant volatility optien pricing formula. The CEV option
pricing model performs better than the BS model in most of the moneyness-maturity groups. The
empirical evidence shows that for out-of-sample performance, the mean absolute errors and
percentage errors of the CEV model performs better than the BS model in medium and long term
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OTM cases. In addition, the CEV model 1s even better than the BS model in a few cases in these
categories. In terms of model misspecification, by using implied volatility graph introduced by
Rubinstein (1985), the volatility of CEV model is ranging between 33 and 26% in all maturity
groups. For those options with less than 60 days to expiration, the volatility of CEV model is more
stable than all the other models. For longer-maturity options, the volatility smile of the CEV model
is similar to BS model with around 2% fluctuation. In summary, the CEV model, introducing only
one more parameter compared with BS formula, improves the performance notably in all the tests
of out-of-sample and the stability of implied volatility. Furthermore, with a much simpler model,
the CEV model can still performs better than the BS model in short term and OTM categories.
Therefore, with much less implementational cost and faster computational speed, the CEV option
pricing model can be a better candidate than benchmark BS model. Further empirical work is
required to prove that CEV model works better than much more complex stochastic option pricing
models or not. National Stock Kxchange of India can switch from Black-Scholes Models to Constant,
Elasticity of Variance Model for fixing the base price of index/stock options traded on NSKE more
efficiently. Also traders can use CEV model to predict the next day options more accurately
compared to BS model for trading purpese which could help them in maximizing their returns on
Index options.
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