Variation of Some Nutritional Constituents and Fatty Acid Profiles of *Chlorella vulgaris* Beijerinck Grown under Auto and Heterotrophic Conditions

1 Mostafa M. El-Sheekh and 2 Alaa A. Fathy
1 Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
2 Department of Botany, Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract: This study is an attempt to evaluate the nutritional value of *Chlorella vulgaris* Beijerinck grown under autotrophic and heterotrophic conditions concerning their content of carotenoids, protein, proline, total free amino acids and fatty acids. Chlorophyll a (Chl.a) content of autotrophic cells of *C. vulgaris* was double that estimated in heterotrophic cells, while chlorophyll b (Chl.b) content of autotrophic cells was nearly half the value recorded for heterotrophic cells. Carotenoids (Car.) content of heterotrophic cultures decreased by 30.82% compared to that value of autotrophic cells. There was a slight decrease in the protein content of *C. vulgaris* under heterotrophic conditions. When the composition of total free amino acids and proline of *C. vulgaris* grown under autotrophic conditions is compared to that grown heterotrophically, it was observed that a significant increase in total free amino acids and proline in heterotrophic cultures. The percentage of most fatty acids of heterotrophic cells was relatively higher than autotrophic ones. There was no qualitative difference between autotrophic and heterotrophic cultures, except for the fatty acid 16:02 which was absent under autotrophic conditions. Present results showed that *C. vulgaris* has quite a simple qualitative fatty acids composition compared to other chlorophycean species, considering production of natural food supplements and/or natural pharmaceutical products, it is strongly recommended using autotrophic cells of *Chlorella* rather than using those of heterotrophic cells for such purpose.

Key words: *Chlorella vulgaris*, nutritional value of algae, green algae, light

INTRODUCTION

Natural products play an important role in the drug production (Cragg et al., 1997). Thus, the investigation of new algal chemical compounds, as natural source of natural products, has proved to be a promising area of pharmaceutical study (Blunt et al., 2005; Singh et al., 2005; Cardozo et al., 2007).

Carotenoids are natural pigments exercising important biological functions in algae, plants and animals (Polivka and Sundström, 2004; Cardozo et al., 2007). For human nutritional purposes, some carotenoids offer provitamin A activity (Mayne, 1996). They are directly providing photoprotection against UV light photooxidation in the skin beside their key role factor in reducing the incidence of many diseases (Cantrell et al., 2003; Astley et al., 2004; Sies and Stahl, 2004; Aust et al., 2005).

Polysaturated fatty acids (PUFAs), especially the essential omega-6 and omega-3 fatty acids, play key roles in nearly all cellular metabolic process in human body because there is no synthetic mechanism for their production inside the body (Funk, 2001; Sayanova and Napier, 2004). Thus an external source is needed to provide the human body with its need of such essential fatty acids. Most of fatty acids production processes investigated to date have been based on photoautotrophic growth (Sánchez et al., 2002; Molina et al., 2003).

It is well known that algae are at the bottom of the aquatic food chain. The primary determinant in establishing the food quality transferred through successive levels of the food web appears to be the biochemical composition of the algae (fatty acids, amino acids, protein and other pharmaceutical products) (Droop, 1974; Brown and Miller, 1992; Morimoto et al., 1995; Shibata et al., 2003; Cardozo et al., 2007).

Algae are considered as the main natural source for both carotenoids and essential fatty acids beside other valuable nutritional value. The green alga *Chlorella* has attracted considerable interest for commercial production of functional food such as polysaturated fatty acids by *C. sorokiniana* (Chen and John, 1991) and lutein by *C. protothecoides* (Shi et al., 2002). *Chlorella zofingiensis* has been proposed as a promising producer.

Corresponding Author: Alaa A. Fathy, Department of Botany, Faculty of Science, Alexandria University, Alexandria, Egypt

153
of the high-value carotenoids (Crosta et al., 2000; Ip and Chen, 2005). The correlations between cultivation conditions and percentage of carotenoids, protein and fatty acids contents were subjects of many studies (Piorreck et al., 1984; Vladimirova et al., 2000; Petkov and Garcia, 2007).

Fatty acids yield and productivity in photoautotrophic systems are low, because the insufficiency of light caused by mutual shading of cells (Barclay et al., 1994; Chen et al., 1996). For enhancement of fatty acid production by microalgae, the development of a heterotrophic growth is desirable (Wen, 2001). The concept that autotrophic microorganisms can utilize only inorganic carbon dioxide as a carbon source has been modified over years (Shugarmann and Appleman, 1966; Bennett and Hobbie, 1972; Cho et al., 1981; Feng et al., 2005).

In this study, an attempt was made to evaluate the nutritional value of Chlorella vulgaris grown under autotrophic and heterotrophic conditions concerning their content of carotenoids, protein, proline, total free amino acids and fatty acids. It was an attempt too, to answer the question: Does heterotrophy enhance fatty acids production? Also, validity of fatty acids composition as stable taxonomic feature for the genus Chlorella was briefly discussed as aside issue.

MATERIALS AND METHODS

Culture conditions: The modified basal medium (Chen et al., 1996; Wu and Shi, 2007) containing 1250 mg L⁻¹ KHPo₄, 1000 mg L⁻¹ MgSO₄, 500 mg L⁻¹ EDTA, 114.2 mg L⁻¹ H₂BO₃, 111 mg L⁻¹ CaCl₂, 49.8 mg L⁻¹ FeSO₄, 88.2 mg L⁻¹ ZnSO₄, 14.2 mg L⁻¹ MnCl₂, 7.1 mg L⁻¹ MoO₃, 15.7 mg L⁻¹ CuSO₄ and 4.9 mg L⁻¹ Co(NO₃)₂, and supplemented with 10 g L⁻¹ glucose (as the carbon source) was used for heterotrophic cultivations of Chlorella vulgaris. Cultivation of axenic C. vulgaris was carried out in 250 mL flasks (each containing 100 mL of medium) (all experiments conducted from 2006 to 2008). All media in the flasks were sterilized in autoclave at 121°C for 20 min. The cultures were incubated at 30°C with orbital shaking at 130 rpm under darkness. Autotrophic cultures were continuously illuminated with 40 W fluorescent lamps (70 μmol/m²/sec). Experiment for each trial was carried out in triplicates. Each culture was tested occasionally for contamination by bacteria or fungi by incubating an aliquot with peptonic agar at 30°C for at least 2 days in the dark. Cultures used for chemical analysis were harvested after 9 days during the exponential phase.

Estimation of pigments: Algal cells were homogenized at 1,000 rpm for 1 min, using 100% acetone (50 mL for each g sample). The homogenate was filtered through two layer cheese cloths and was centrifuged at 2,500 rpm for 10 min. The supernatant was separated and the absorbance was read at 662, 645 and 470 nm for Chl a, Chl b and Carotenoids (Car.), according to the method described by Dere et al. (1998). The amount of these pigments was calculated according to the formulas of Lichtenthaler and Wellburn (1985):

\[
\text{Chl a} = 11.75 A_{662} - 2.350 A_{470}
\]

\[
\text{Chl b} = 18.61 A_{645} - 3.960 A_{470}
\]

\[
\text{Car.} = [1000 A_{680} - 2.270 \text{Chl a} - 81.4 \text{Chl b}]/227
\]

Estimation of total free amino acids: Total free amino acids were estimated according to the method of Yemm and Cocking (1955). One milliliter aliquot of the acidified extract was mixed with 2 mL sodium acetate buffer (pH 6.5) and 1 mL freshly prepared ninhydrin reagent. The resulting color was then read at 570 nm with Perkin Elmer spectrophotometer. Leucine was used as a standard.

Estimation of free proline: Free proline estimation was carried out using the acid ninhydrin method of Bates et al. (1973). The absorbance was read at 520 nm using Perkin Elmer spectrophotometer and the proline concentration was calculated from a proline standard curve.

Estimation of protein: The protein was estimated according to Folin-Ciocalteu method described by Hartree (1972) and the resulting color was measured at 650 nm using Perkin Elmer spectrophotometer, related to a standard curve of bovine serum albumin.

Determinations of lipids and fatty acid composition: Fatty acids were analyzed by Gas Liquid Chromatography (GLC) (Schimadzu GC4-CM). The relative peak areas on the chromatogram were estimated after tracing them on sectional paper and thus the content (%) of different fatty acids was estimated. The conditions for GLC analysis were: column size: 3×3 mm id; carrier gas: nitrogen; fuel: hydrogen-air mixture; hydrogen flow rate: 1 mL min⁻¹; air flow rate: 0.5 mL min⁻¹; detector: FID; detector temperature: 270°C; column temperature: 180°C. Extraction and methanolysis were performed according to the method described by Chalvardjian (1964) and Moneam and Ghoneim (1986).

Experimental design and statistical analysis: All experiments were prepared in triplicate and each experiment was repeated 2 times. Pigment, protein, total
free amino acids, proline and fatty acid contents were analyzed in triplicate. The mean of all repetitions was calculated and analyzed by one-way analysis of variance (ANOVA) and correlation coefficients analysis, using the COSTAT 2.00 statistical analysis software manufactured by Cohort Software Company.

RESULTS AND DISCUSSION

Chlorophyll a (Chl.a) content of autotrophic cells was double that estimated in heterotrophic cells (4.481 and 2.672 mg g⁻¹ DW, respectively). On contrary, chlorophyll b (Chl.b) content of autotrophic grown cells was nearly half the value recorded for heterotrophic cells (0.563 and 1.071 mg g⁻¹ DW, respectively). The heterotrophic ratio of Chl.a to Chl.b lost about 68.65% of its value in autotrophic grown cells. Carotenoids (Car.) content of heterotrophic cultures decreased by 30.82% compared to its value for autotrophic cultures. The results in Table 1 showed that the significantly enhancement effect of light on Chl.a and Car., biosynthesis seemed remarkably under photoautotrophic conditions. However, under heterotrophic conditions, Chl.b content was significantly increased on the expense of the production of other pigments. These results suggest that there is an organic carbon source like glucose in the culture medium and in absence of light, C. vulgaris favor the formation of Chl.b. This agree with the study of Misonou and Pachaluvuni (1986), who suggested that under heterotrophic conditions the synthesis pathways of Chl.a and carotenoids are blocked or at least slow down, while the synthesis pathway of Chl.b was greatly promoted. Another possible explanation was driven by Vladimirova (1976), who found ultra structural alterations in the photosynthetic apparatus of Chlorella sp. grown heterotrophically. It is possible that present result of the variation in pigment contents under different culture conditions, in this study, is related to such suggestion.

On comparing protein content of C. vulgaris cells grown under autotrophic and heterotrophic conditions, there was a slight decrease (6.05%) in the protein content (Table 2). When the composition of total free amino acids and proline of Chlorella grown autotrophically is compared to that grown heterotrophically, it was found that a significant increase in total free amino acids and proline (65.86 and 42.86%, respectively) (Table 2). It seemed that heterotrophy negatively affect the protein synthesis, while positively affect and promoted synthesis of total free amino acids and proline. That is may be due to the heterotrophic cells did not need to use the available amino acids to build up protein molecules or due to degradation of protein molecules. At the same time, the increase of amino acids and proline was expected, due its known accumulation behavior in plants subjected to different environmental stresses as light availability (Hashimoto et al., 1982; Borowcitzka, 1988; Sansawa and Endo, 2004).

The composition of fatty acids of C. vulgaris is shown in Fig. 1 and 2. The percentage of most fatty acids of heterotrophy cells was relatively higher than autotrophic cells (Fig. 2). Only, three fatty acids (12:0, 14:0 and 20:0) showed different trend, where they increased under autotrophic conditions rather than heterotrophic conditions. However, except for the fatty acid 16:02 which was absent under autotrophic conditions, there was no qualitative difference between autotrophic and heterotrophic cultures, (Fig. 1, 2). Such quantitative differences could be accepted as temporary physiological response to variation in culture conditions (Shinohji et al., 1983; Zhukova and Aizdaicher, 1995; Rosa et al., 2005). The biological importance of the utilization mechanism of glucose by Chlorella is not completely understood, but whatever, the natural circumstances which make autotroph grown Chlorella switch to heterotrophy, a

Table 1: Contents (mg g⁻¹ DW) and correlation coefficients of chlorophyll a, chlorophyll b and carotenoids of Chlorella vulgaris grown under autotrophic and heterotrophic conditions for 9 days

<table>
<thead>
<tr>
<th>Pigment</th>
<th>Autotrophic</th>
<th>Heterotrophic</th>
<th>Degree of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl.a</td>
<td>4.481±0.7</td>
<td>2.672±0.3</td>
<td>-</td>
</tr>
<tr>
<td>Chl.b</td>
<td>0.563±0.2</td>
<td>1.071±0.2</td>
<td>-</td>
</tr>
<tr>
<td>Chl.a/chl.b ratio</td>
<td>7.959±0.7</td>
<td>2.495±0.5</td>
<td>-</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>6.064±0.8</td>
<td>4.195±0.4</td>
<td>-</td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>Chl.a</th>
<th>Chl.b</th>
<th>Chl.a/chl.b</th>
<th>Carot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

Data expressed as Mean±SD (n = 3). *Mean values significant at p<0.05; **Mean values significant at p<0.01; ***Mean values highly significant at p<0.001

Table 2: Contents and correlation coefficients of protein, proline and Total Free Amino Acids (TFAA) of Chlorella vulgaris grown under autotrophic and heterotrophic conditions for 9 days

<table>
<thead>
<tr>
<th>Growth condition</th>
<th>Protein (mg g⁻¹ DW)</th>
<th>Proline (mg g⁻¹ DW)</th>
<th>Degree of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autotrophic</td>
<td>388.95±21.8</td>
<td>301.97±16.1</td>
<td>6.438±0.9</td>
</tr>
<tr>
<td>Heterotrophic</td>
<td>305.40±11.5</td>
<td>704.59±23.4</td>
<td>9.776±2.2</td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>Protein</th>
<th>Proline</th>
<th>TFAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

Data expressed as Mean±SD (n = 3). ***Mean values highly significant at p<0.001
of different species/phenotypes of the genus *Chlorella*. Present results showed that *C. vulgaris* has quite a simple qualitative fatty acids composition compared to other chlorophycean species. The qualitative composition of fatty acids varied not only at species level, but also varied in different phenotypes of the same species of *Chlorella* (Nichols, 1965; De Mort et al., 1972; Antonyan et al., 1986; Vladimirova et al., 2000; Petkov and Garcia, 2007). Petkov and Garcia (2007) stated that there is no difference in qualitative composition of fatty acids of the genus *Chlorella*. Although, they believed in the stability of qualitative fatty acids composition as a characteristic feature of the genus *Chlorella*, they drove a lot of evidences that showed a great variability in qualitative fatty acid composition in different species of *Chlorella*. Meanwhile, they accept the idea of using qualitative fatty acids composition as a taxonomic feature of particular species of *Chlorella*; they presented many explanations of the variability in qualitative fatty acids composition (Table 3). For example, they revealed the presence of the fatty acids 15:0, 17:0 and 17:1 as results of culture contamination with bacteria, in agreement with others (De Mort et al., 1972; Wacker et al., 2002). Also, they explained the presence of the fatty acids 20:0, 20:1 and 20:2 on the basis of the presence of impurities with similar retention time in GLC which agreed with the results obtained by Antonyan et al. (1986) and Homova et al. (1986).

Due to the obvious variability in both qualitative and quantitative fatty acid compositions of *Chlorella* in this study compared to other recent reports, one should pay a lot of attention to come into acceptable conclusion for such issue. Thus, it is better to perform much detailed investigations on qualitative fatty acids composition for different *Chlorella* species using more sophisticated and precise techniques to come into acceptable conclusion.

Table 3: Correlations coefficients for fatty acids extracted from *Chlorella vulgaris* grown under autotrophic and heterotrophic conditions for 9 days

<table>
<thead>
<tr>
<th>Variables</th>
<th>Fatty acids</th>
<th>20:0</th>
<th>18:03</th>
<th>18:02</th>
<th>18:01</th>
<th>18:00</th>
<th>16:02</th>
<th>16:01</th>
<th>16:00</th>
<th>15:00</th>
<th>14:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00</td>
<td>***</td>
<td>***</td>
<td>NS</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>***</td>
<td>***</td>
<td>NS</td>
<td>***</td>
</tr>
<tr>
<td>14:00</td>
<td>**</td>
<td>**</td>
<td>NS</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>NS</td>
<td>**</td>
</tr>
<tr>
<td>16:00</td>
<td>***</td>
<td>***</td>
<td>NS</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>NS</td>
<td>***</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>18:01</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>***</td>
</tr>
<tr>
<td>18:02</td>
<td>NS</td>
</tr>
<tr>
<td>18:03</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>NS</td>
<td>NS</td>
<td>***</td>
</tr>
</tbody>
</table>

NS: Not significant; *Mean values significant at p<0.05; **Mean values significant at p<0.01; ***Mean values highly significant at p<0.001
Finally, considering production of natural food supplements or and natural pharmaceutical products, it's strongly recommended using autotrophic cells of *Chlorella* rather than using those of heterotrophic cells for such purpose. This is because the richness in carotenoids, protein and fatty acids contents of autotrophic *Chlorella*.

ACKNOWLEDGMENT

The authors are much grateful to Dr. Mohamed Shiboob (Faculty of Agriculture, University of Alexandria) for his help in essential oil analysis.

REFERENCES

