Evaluation of Mycorrhizae Symbiosis Efficiency with Barley (Hordeum vulgare L.) through 32P Uptake under Soils Contaminated with Heavy Metals

1M.R. Ardanani, 2S. Teimuri, 3M. Rezvani, 4H. Fathollahi, 5A. Khorasani,
6F. Rejali, 7A. Raza and 8F. Zafarian
1Agriculture Research Center, Islamic Azad University, Karaj Branch, Iran
2Nuclear Science and Technology Institute, Iran
3Faculty of Agriculture, Islamic Azad University, Ghaemshahr Branch, Iran
4Soil and Water Research Institute, Iran
5University of Natural Resources and Applied Life Sciences, Vienna, Austria
6University of Agriculture and Natural Resources of Sari, Iran

Abstract: This study designed to investigate more precise of mycorrhizal symbiosis in order to increasing mineral absorption by plant root system. Three pot experiments, radioactive with 32P, non-radioactive and a trial with selected strain (from first and second trials) with heavy metals (Cd, Co and Pb) contaminated soil were set up for evaluation the efficacy of four mycorrhizae strains including Glomus mosseae, G. etunicatum, G. intraradices, mixed strains (combination of G. mosseae, Gigaspora margarita and G. fasciculatum) in order to investigate the uptake, translocation and distribution of 32P. P and also dry matter in barely in a glass house. Radioactive phosphorus (32P) was used in this study. Results revealed that G. mosseae had the highest amount of P uptake in comparison with other strains. It indicates that differences exist among mycorrhizae strains towards 32P uptake and its transportation to shoot. Increased strain count of G. mosseae was found in contaminated pots in trial with contaminated soil along with higher P concentration in root and shoot than non-inoculated plant roots.

Key words: Heavy metals, 32P, mycorrhizae symbiosis, barely

INTRODUCTION

Arbuscular Mycorrhiza (AM) fungi can improve growth and nutrition of plants and have been shown to influence plant competition, plant community structure and biodiversity (Zhou et al., 2001; O’Connor et al., 2002; Callaway et al., 2003; Klironomos, 2003). The function of all mycorrhizal systems depends on the efficiency of the fungal symbiont to uptake of inorganic and/or organic available nutrients in soil (Marschner and Dell, 1994). Arbuscular Mycorrhiza has importance due to its great capability to increase plant growth and yield under certain conditions. The major reason for this increase is the ability of plants in association with AM to uptake some nutrients such as phosphorus (P) efficiently (Pedla and Douds, 2001). Extra-radical hyphae of the AM extend up to 8 cm beyond the root (Rhodes and Gerdemann, 1975) and act, in effect, as extensions of the root system in acquiring nutrients from the soil (Douds and Millner, 1999). P content also has an effect on physiological parameters in plants (Paradi et al., 2003). In the contaminated soil, P is a critical factor towards tolerance of plant against excess levels of heavy metals. Andrade et al. (2004) showed with enhancement of Pb concentration, symbiosis AM provided P for soybean. They concluded that the mycorrhizal effects on P uptake probably improved plant development and indirectly lessened the stress caused by excess Pb in the soil by maintaining higher P/Pb ratios on the shoots. There is support for the idea that AM may have role in P and dry matter distribution in plants. Arbuscular Mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the myphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up heavy metals from an enlarged soil volume (Gohre and Paszkowski, 2006; Daei et al., 2009). The present study was undertaken to evaluate the response of barely, planted in heavy metal contaminated soil, towards inoculation with
selected AM fungi strains with the objective to identify
the most efficient strain in terms of establishing
symbiosis, increasing P uptake and biomass allocation
and P concentration in plant shoots and roots.

MATERIALS AND METHODS

Three pot experiments were executed under
greenhouse conditions at Agriculture, Medicine and
Industrial Research School, Institute of Nuclear Science
and Technology, Karaj, Iran in 2006-2007.

Mycorrhizae strains production: The inoculums of
arbuscular mycorrhizal species including Glomus
mosseae, G. etunicatum, G. intraradices, mixed strains
(combination of G. mosseae, Gigaspora hirta and
G. fasciculatum) were produced over a four-month period
on sorghum plants under greenhouse conditions using
sterilized sands (Mirnarsari et al., 2007, 2008). The mixture
of sorghum roots and sand were used as the inoculum.

Experiment 1

Radioactive trial: The experiment 1 was 32P radioactive
trial, planted to evaluate the efficiency of
Mycorrhizae-Barley symbiosis establishment. Trial was
carried out in 2006 following Completely Randomized
Design (CRD) with four replicates and five treatments
(Glomus mosseae, G. etunicatum, G. intraradices, Mixed
strains (combination of G. mosseae, Gigaspora hirta and
G. fasciculatum) and control).

A sample of silty clay soil from the surface of soil
horizon (0-20 cm) was used. The soil was air dried,
sieved and filled in pots of 30 cm height and 30 cm
diameter (10 kg soil for each pot). Mycorrhizal treatments
exerted with application of 50 g inoculums prepared in
sandy substrate. Infection with each strain implemented
individually for impeding the combination of strains.
Inoculums were mixed with 5 cm upper surface of pot soil.
After seeds germination, plants were thinned to maintain
a plant density of 5 plants per pot under controlled
conditions. During the trial, tap water was used to irrigate
plants.

Application of 32P: At the maximum vegetation growth
stage, nearly 85 days after planting 32P treatment was
applied. Three μCi 32P prepared in the form of
orthophosphoric acid was diluted and 1 mL of solution
was used for treating each pot. Radioactivity of
each treated pot was 58.72 μCi. Irrigation was applied
immediately following treatment application for even
distribution of solution throughout soil horizon within
each pot.

Harvest and measurements: In the early stage of
flowering (135 days after planting), plants were harvested
and stems and leaves were separated. Samples were dried
in oven at 70°C for 48 h, weighed and ground. Materials
were sieved to achieve homogeneous samples.

32P activity in plant samples was counted by β
counter (Multi low level counter FHT770-Eberline
Company) for 1000 sec. As, calibration of β counter
applied in the trial was performed according to efficiency
of standardized 32P source on the basis of gas
proportional system, the value of E was considered 0.36.
Amount of activity in each sample (1 g dry matter) was
expressed by Bq (Bequerel).

Specific activity of sample was calculated by
radioactivity of 32P per unit weight/total amount of
phosphorous (both active and stable isotopes)
(IAEA, 1990). Specific activity of labelled fertilizer was
217.09 Bq g$^{-1}$.

Experiment 2

Non-radioactive trial: The experiment 2 was conducted to
evaluate the ability of mycorrhizal strains for capturing
soil phosphorous and estimating the mycorrhizal
colonization in semi-natural condition without any
application of 32P or another form of phosphorus
fertilizers. This experiment was managed in exactly the
same way from sowing till harvest as experiment 1.

Harvest and measurements: Plants were uprooted from
each pot and then they were separated to shoot and
roots. Aboveground materials were washed with distilled
water. Plant materials were placed in the oven at 70°C for
48 h. P concentration of shoot was measured by
Inductively Coupled Plasma-Optical Emission
Spectrometer (ICP-OES) (Variant-Liberty 150AX Turbo).
Roots were washed with tap water and sub samples were
taken for mycorrhizal colonization evaluation. The
colonization of each plant was evaluated on 51 cm root
samples. Mycorrhizal root colonization (percentages of
root length) was estimated by the Grid-Line Intersect
Method (Giovannetti and Mosse, 1980) after clearing the
root systems with 25 gL$^{-1}$ KOH and staining with trypan
blue (Phillips and Hayman, 1970).

Experiment 3

Effect of heavy metals on P uptake and partitioning: The
third experiment was set up in a 2*8 factorial completely
randomised design, with four replications. The first factor
was inoculation with G. mosseae (I) and non-inoculation
(II). The second factor included seven levels of
contaminations Co, Cd, Pb, Co$<$Cd, Cd$<$Pb, PbxCo and
Pb$<$Co$<$Cd plus control treatment (C) without
any contaminants. A silty clay Soil used was same as
for experiment 1 and 2 having total Co content =

237
51.91 mg kg⁻¹ dried soil, total Cd content = 8.5 mg kg⁻¹ dried soil and total Pb content = 436 mg kg⁻¹ dried soil. The heavy metal salts used were CoSO₄ for Co, CdCl₂ for Cd and Pb (NO₃)₂ for Pb.

The soil contamination was performed before planting by adding the calculated amounts of salt form of heavy metals dissolved in distilled water and mixing throughout the soil profile. They were allowed to stabilise for 15 days. Then, 50 g of G. mosseae inoculum was mixed with 5 cm upper surface of soil. After germination, plants were thinned to maintain a plant density of 5 plants per pot. During trial tap water was used as source of irrigation.

Harvest and chemical analysis of plant samples: Plants were cut from soil surface in early flowering stage. Roots were extracted from pot. Aboveground materials were separated into the stems and leaves and washed by distilled water. Total plant materials were put in an oven at 70° C for 48 h. Dried plant samples were ground.

Ground samples were digested in 10 mL nitric acid according to the microwave technique until clear and diluted to 25 mL with deionised water. For heavy metals analysis and phosphorous, Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) (Variant-Liberty 150AX Turbo) was used.

Statistical analysis: Data were analyzed using SAS (SAS Institute Inc., 1988). Analysis of variance was used to examine different experimental factors and their interactions. Treatment means also were compared (Steel and Torrie, 1988).

RESULTS

Experiment 1

Leaf, stem, spike and shoot biomass: In radioactive trial, there were significant differences among strains in leaves, stems and shoot biomass. Barely inoculation with G. mosseae caused the highest amount of biomass accumulation in stem, spike and shoot (Fig. 1B-D). But control, mixed strain and G. mosseae produced similar leaf biomass (Fig. 1A).

![Graphs showing biomass comparison](image-url)

Fig. 1: Mean comparisons for effect of different strains on leaf biomass, stem biomass, spike biomass and shoot biomass by Duncan's multiple range test (p<0.05) (radioactive trial). C: Control, G.e: G. etunicatum, G.i.: G. intraradices, G.m.: G. mosseae and m.s.: Mixed strain. Same letters indicate non-significant differences between interactions.
Fig. 2: Mean comparisons for effect of different strains on leaf activity, stem activity, spike activity, shoot activity, leaf specific activity, stem specific activity, spike specific activity and shoot specific activity by Duncan's multiple range tests (p<0.05) (radioactive trial). C: Control, G.e: G. etunicatum, G.i.: G. intraradices, G. m.: G. mossea and m.s.: Mixed strain. Same letters indicate non-significant differences between interactions.

Leaf, stem, spike and shoot activity: Results of this experiment revealed that impact of different strains of mycorrhizae on activity of leaves, stems and shoot was significant. Over all, Leaf, stem, spike and shoot activity was higher due to G. mossea as compared to other strains (Fig. 2A-D).

Among the other strains, G. etunicatum had the lowest leaf activity even lower than control (Fig. 2A). Control treatment and G. intraradices had the lowest stem activity (Fig. 2B). Applied mycorrhizal strains (except G. mossea) couldn't allocate higher 32P to spike when compared with control. Also, shoot activity in control was similar to other strains (except G. mossea) (Fig. 2D).

Leaf, stem, spike and shoot specific activity: Among the applied strains of mycorrhizae, G. mossea produced maximum specific activity in stem, leaf and shoot (Fig. 2E-H). This trait showed that stem, leaf, spike and shoot had higher rate of labelled phosphorus.
Fig. 3: Mean comparisons of effect of different stains on root biomass and shoot biomass of barely by Duncan's multiple range tests (p<0.05) (non-active trial). C: Control, G.e: G. etanicatum, G.i.: G. intraradices, G.m.: G. mosseae and m.s.: Mixed strain. Same letters indicate non-significant differences between interactions.

Experiment 2
Leaf, stems, spike and shoot biomass: Results of experiment 1 confirmed better ability of G. mosseae in biomass production of leaf, stem and shoot than other applied inoculums (Fig. 1A, B, 3A, B).

P concentration in shoot: Amount of P in the barely shoot imposed by all of applied strains and G. mosseae had been higher than other strains (Fig. 4). In non-radioactive trial G. mosseae produced maximum P concentration in shoot, like active trial.

Mycorrhizal colonization index: Results of mycorrhizal colonization revealed differences amongst inoculums for roots colonization of barely. G. intraradices had the highest ability in establishing colonization in barely root (Fig. 5), but G. mosseae allocated the highest biomass and 15P to root, stem, spike and shoot, but was weaker than G. intraradices in root colonization.

Experiment 3
P concentration in shoot: Results showed that the highest concentration of P in shoot was due to CoCd.

Fig. 4: Mean comparisons of effect of different stains on shoot phosphorus concentration of barely by Duncan's multiple range tests (p<0.05) (non-active trial). C: Control, G.e: G. etanicatum, G.i.: G. intraradices, G.m.: G. mosseae and m.s.: Mixed strain. Same letters indicate non-significant differences between interactions.

Fig. 5: Mean comparisons of effect of different stains on mycorrhizal colonization by Duncan's multiple range tests (p<0.05) (non-active trial). C: Control, G.e: G. etanicatum, G.i.: G. intraradices, G.m.: G. mosseae and m.s.: Mixed strain. Same letters indicate non-significant differences between interactions.

P concentration in root: Inoculated treatment (except 10CoCd) had more concentration of P in comparison with non-inoculated treatments (Fig. 6B). In the contaminated soil trial, in all pots that were polluted by CoCd, PbCd and Pb, Co, Cd, Cd concentration of root, in non-inoculated plants by G. mosseae was more than inoculated ones. It is consider that in each Cd contaminated pot, there was enhanced P concentration in root.
Arbuscular mycorrhizal can dramatically increase absorption of mineral nutrition, particularly immobile nutrients by host plant from the soil (Safir et al., 1971). There are indirect evidences that show mycorrhizal roots are more efficient in nutrient uptake than non-colonized roots. This evidence originates from the fact that mycorrhizal plants are frequently not only larger but also contain higher concentration of P in their tissues than non-colonized control plants (Smith and Read, 1997). P is a vital element in photosynthesis that has important role in energy transportation as energy carrier in photosynthesis and biological systems. Presence of mycorrhizal symbiosis in terrestrial ecosystems has effect on organic and inorganic plant nutrition, water relation and carbon cycle in plants (Entry et al., 2002).

Use of mycorrhizae can increase plant biomass by enhancement of water and nutrients absorption and increasing the photosynthesis activity of plants. Use of mycorrhizal fungus can lead to higher biomass production and its larger size can be considered as a competitive advantage against non-inoculated/non-mycorrhizal plants. Therefore, increment of ability and efficiency of barely-G. mosseae association in uptake and allocation of P can be useful for obtaining more growth and biomass production following improvement of CO₂ assimilation activity. The roles of AM symbiosis are characterized by (1) an increased heavy metals phytoextraction via mycorrhizospheric Enhanced Uptake at low soil-heavy metals concentrations and (2) a reduced heavy metals bioavailability via AM fungal Metal-Binding processes at high soil-heavy metals levels, hence resulting in increased plant biomass and enhanced plant tolerance through heavy metals stress-avoidance (Audet and Charest, 2007).

High concentration of P in barley shoot in exp. 1, enhancement of ³²P and specific activity of plant arise on effect of G. mosseae on promotion of barely root. Mycorrhizal hyphae increase capability of root system for exploring the higher volume of soil for obtaining water and nutrient. This unique ability is exhibited by production of extra radicle hyphae that grow several centimetres in soil far away roots. As, AM increased root absorption surface by hyphae production, it leads to improvement of water and nutrients uptake by plants. About 80% of P uptake by plants is estimated to be exerted by AM (Marschner and Dell, 1994).

Generally, in contaminated soil inoculation with G. mosseae increased uptake and movement of P to the shoot and also roots. It is considered that G. mosseae was an effective strain in this trials, which may be useful for barely in heavy metal stressful condition by more uptake of P for tolerance and detoxification contaminants.

Sequestration of P can help detoxification of heavy metals to plant in stressful land. These advantageous
supplies by molecules of phytoates that neutralize excess metals, or P can provide metabolic energy indirectly as ATP for possible compartmentalisation within the cell vacuoles (Davies et al., 1991). Also, results of Meharg et al. (1994) suggested that tolerant plants of *Hocu lanatus* L. to heavy metals are related on mycorrhizal symbiosis for P uptake and sequestration. Metals may be sequestered in the hyphae and not translocated to the plants. Sequestration of metals by polyphosphate in the fungus is important in reduction of movement to plant (Turnau et al., 1993). In conclusion, it is possible efficiency of mycorrhizal plants in uptake and sequestration of heavy metals and also tolerance to the metals, particularly to multi-metals contaminated soils or exceeded content of metals depend on contribution of P uptake of mycorrhizal plants roots.

ACKNOWLEDGMENTS

The authors wish to thank Head of Agriculture, Medicine and Industrial Research School for his encouragement and for financial support of Nuclear Science and Technology Institute, Iran.

REFERENCES

