Bryophyte Diversity Within Urban Areas: Case Study of the City of Belgrade (Serbia)

1M. Sabovljević and 2S. Grdović
1Institute of Botany, Faculty of Biology, University of Belgrade, Takovska 43, 11000, Belgrade, Serbia
2Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslomošćenja 18, 11000, Belgrade, Serbia

Abstract: The bryophyte diversity and urban bryophyte flora of the city of Belgrade was studied. In total 210 taxa were recorded, with 23 hepatics and 187 mosses. Comparing to some other urban areas of Europe, bryophyte diversity of the Belgrade metropolitan belongs among the richest in Europe, however bryophyte are not abundant. Among bryophytes of Belgrade city, there are 14 nationally red-listed species and two internationally threatened. According to the frequency of records, the Belgrade bryophytes are classified to rare, common and spread. Rare species within the urban area are 94, 69 are common to find and only 24 are spread and easy to record in Belgrade wide area. Urban metropolitan areas are different from native but gives various condition in small shelters for rich diversity of small organisms like bryophytes.

Key words: Diversity, bryophytes, mosses, hepatics, urban flora, Belgrade

INTRODUCTION

Urban areas comprise many ecological situations which differs among each other. Considering the small size of the microhabitats, it can not offer potentially many resources for the proper development of huge plants. However, small plants like bryophytes i.e., liverworts and mosses are widely adapted to such sites and even more appreciate the absence of other competitive plants. Therefore, bryophyte flora of urban areas represent significant part of the city vegetation.

The urban bryophyte vegetation is interesting not only by its floristic composition, but to presence of rare and significant taxa, vegetation relationships and from phyto-geographical point of view.

The city of Belgrade (serb. Beograd) is the capital of Serbia having about 2 million inhabitants (ca. 21% of the Serbian population). It is located in the south-eastern of Europe, where, the Pannonian plain meets the Balkan Peninsula, at the confluence of the Sava and Danube rivers (44°49’14" North, 20°27’44" East). Belgrade lies 116.75 m (383 ft) above sea level. The city has an urban area of 360 km² (139 sq miles), while together with its metropolitan area it covers 3,223 km² (1,244.4 sq miles). Central Belgrade has hilly terrain, while the highest point of Belgrade proper is Torlak Hill at 303 m (994 ft). The mountains of Avala (511 m (1,677 ft)) and Kosmaj (628 m (2,060 ft)) lie south of the city. Across the Sava and Danube, the land is mostly flat, consisting of alluvial plains and loess cliffs and plateaus.

It is one of the oldest cities in Europe and since ancient times it has been an important traffic focal point, an intersection of the roads of Eastern and Western Europe. Its territory is divided into 17 municipalities and covers 3.6% of the territory of Serbia.

Belgrade has a moderate continental climate with a year-round average temperature of 11.7°C (53.1°F) and four well defined seasons.

The hottest month is July, with an average temperature of +22.1°C (71.8°F). There are, on average, 31 days a year when the temperature is above 30°C and 95 days when the temperature is above 25°C. Belgrade receives about 700 mm (27.6 inches) of precipitation a year. The average annual number of sunny hours is 2,096. The sunniest months are July and August, with an average of about 10 sunny hours a day, while December and January are the gloomiest, with an average of 2-2.3 sunny hours a day. The highest ever recorded temperature in Belgrade was +43.1°C, while on the other end, the lowest temperature was -21°C. Mean atmospheric pressure in Belgrade is 1,001 millibars and mean relative humidity is 69.5%.

Autumn is longer than spring, with longer sunny and warm periods - the so-called Indian summer. Winter is not so severe, with an average of 21 days with temperature below zero. January is the coldest month, with average temperature of 0.4°C. Spring is short and rainy. Summer arrives abruptly and is hot and dry (Jovanović, 1994) (Fig. 1).

Hydrological network of Belgrade is well developed. Geology is mainly limestone, but loess, sandstone and even some serpentine fragments can be found and substrate over are very diverse.

Corresponding Author: Marko Sabovljević, Institute of Botany, Faculty of Biology, University of Belgrade, Takovska 43, 11000, Belgrade, Serbia
Earlier, there are a few sporadic bryophyte records from the wide area of Belgrade (Sokić, 1949; Pavletić, 1955). Grdović and Stevanović (2006) gave contribution to the urban bryoflora of downtown area in Belgrade citing 58 species.

In this study and extensive list of species recorded in wide city area of Belgrade is given as well as the urban bryophyte ecology. The study represents the first extensive investigation of the urban bryophytes within South Eastern Europe.

Up to date studies on bryophytes of urban areas are known for only a few huge urban areas e.g., Berlin and Brandenburg (Scheep, 1986; Benkert et al., 1995), Brussels (Vanderpoorten, 1997), Wien (Hohenwallner and Zechmeister, 2001a, b; Zechmeister et al., 2001; Hohenwallner, 2000a, b).

A few, but very important studies on urban bryophyte ecology give insights into the biological peculiarities and significance of these plants in urban environment (Gilbert, 1968, 1970, 1989; Nickl-Navratil, 1960; Vareschi, 1936; Brandes, 1983; Franzen, 2001; Humen-Hochwimmer and Zechmeister, 2001; Solga et al., 2005, 2006a, b; Solga and Frahm, 2006; Saboljčević et al., 2005, 2007; Vukojević et al., 2005, 2006; Frahm and Saboljčević, 2007).

MATERIALS AND METHODS

During 2000-2007 an extensive bryophyte collection were made in the metropolitan region of the Belgrade city, which includes territories of all municipalities of Belgrade (Stari Grad, Vračar, Savski Venac, Zvezdara, Ćukarica, Palić, Novi Beograd, Zemun, Surčin, Voždovac, Rakovica, Obrenovac, Grocka and partly (northern areas of) Banja Luka, Sopot and Mladenovac). A random sampling in different habitats and microhabitats within the urban area including larger green surface were used to collect as much as possible data on urban bryophyte flora and discover the its diversity within the city of Belgrade.

Nomenclature follows Saboljčević and Natecheva (2006) and Ros et al. (2007) for hepatics and Fill et al. (2006) for mosses. The exception are made within *Hypnum cupressiforme* complex and *Syntrichia ruraliformis* (following Saboljčević et al., 2008).

All the bryophytes collected are assigned to one or four main habitat types (following classification of habitat types proposed by Ron et al. 1987): (1) reophilic (species adapted to water flow and inhabited water proximity); (2) rupetarian and chasmophytic (species growing on concrete and mortar, tiles and bricks, wet, shaded, sunny and dry limestone or acidic rocks and walls); (3) terrestrial (sunny, dry, humid and nitrified soils); (4) epiphytic (tree bases, trunks). The city is for the purpose of easier comparison divided to five zones: (A) old city; (B) modern city; (C) inner parks and green surfaces; (D) outer parks, gardens and yards and (E) the rivers Danube and Sava sides with attachments trough the city. The bryophytes collected are classified as: R) Rare (one or two record(s)); K) common (3-7 records) and S) Spread (more than 7 records, within studied area).

For the comparison with bryoflora richness of other cities we randomly chose some western, central and south European cities: Cologne (Saboljčević and Saboljčević, in press) and Rolandsdieck (Frahm, 2006) in Germany; Trento in Italy (Polkorny et al., 2006), Vienna in Austria (Hohenwallner and Zechmeister, 2001a, b), Madrid (Mazimpaka et al., 1988), Granada (Esteve et al., 1977) and Murcia (Rams et al., 2000) in Spain, Szczecin (Fudali, 1994) in Poland and Bruxelles (Vanderpoorten, 1997) in Belgium.

Bryophyte catalogue: For the each taxa found in the city of Belgrade (wide area), information of the city zones, they lived and habitat, they were growing, are given. Hepatics and mosses are listed separately and alphabetically. Specimens are deposited in Belgrade University Herbarium (BEOU) and the herbarium of Faculty of Veterinary Medicine.
RESULTS

The bryophyte flora of the Belgrade city counts 210 species of which 187 belong to mosses and 23 to hepatics. They are listed below (see the chapter Material and Methods for the abbreviations):

Belgrade bryophyte species

Hepatics

1. Calypogea azurea Stotler et Crotz. D4 - (R)
2. Chiloscyphus polyanthus (L.) Corda D4 - (R)
3. Coleolejeunea rossettiana (C. Massal.) Schiffn. - D2, D3 - (K)
4. Conocephalum conicum (L.) Dumort. B2, C2, C3, D1 - (K)
5. Fossombronia wondraczekii (Corda) Lindb. D3 - (R)
6. Frullania dilatata (L.) Dumort. D4 - (K)
7. Jungermannia sp. - D3 - (R)
8. Lejeunea cavifolia (Ehrh.) Lindb. D4 - (R)
9. Lophocolea bidentata (L.) Dumort. D4 - (K)
10. Lophocolea heterophylla (Schrad.) Dumort. D4 - (K)
11. Lundaria cruciata (L.) Lindb. A3, B3 - (R)
12. Marchantia polymorpha L. D1 - (K)
13. Metzgeria furcata (L.) Dumort. D2, D4 - (K)
14. Pellia endiviifolia (Dick.) Dumort. - D1, D3 - (K)
15. Pellia epiphylla (L.) Corda D4 - (K)
16. Plagiochila pellioides (Torrey ex Nees) Lindenb. D3 - (K)
17. Porella platyphylla (L.) Pfeiff. D2, D4 - (K)
18. Radula complanata (L.) Dumort. D4 - (K)
19. Radula lindenbergiana Gottsche ex C. Hartm. D4 - (R)
20. Riccia fluitans L. D1, D3 - (R)
21. Riccia sorocarpa Bischof. D3 - (R)
22. Ricciocarpus natans (L.) Corda - E1 (R)
23. Scapania nemorea (L.) Grolle - D3 - (R)

Mosses

1. Aloina aloides (Koch ex Schultz) Kindb. A3, B3 - (K)
2. Aloina ambigua (Bruch and Schimp.) Limpr. A3, B3 - (K)
3. Aloina rigidula (Hedw.) Limpr. A3, B3 - (K)
4. Amblystegium confervoides (Brid.) Schimp. D2, D4, E4 - (K)
5. Amblystegium serpens (Hedw.) Schimp. A1, A2, A3, A4, B3, C2, C3, C4, D1, D2, D3, D4, E2, E4 - (S)
6. Amblystegium subtile (Hedw.) Schimp. C4, D2, D3, D4, E4 - (S)
7. Anomodon attenuatus (Hedw.) Huebner D1, D4 - (R)
8. Anomodon longifolius (Schleich. ex Brid.) Hartm. C4 - (R)
9. Anomodon viticulosus (Hedw.) Hook. and Taylor D3, D4 - (K)
10. Atrichum undulatum (Hedw.) P. Beauv. D3 - (K)
11. Barbula convoluta Hedw. B2, C2, D2, D4, E2 - (K)
12. Barbula unguiculata Hedw. A2, A3, C2, D2, D4, E2 - (K)
13. Brachythecium rivulare (Schimp.) Hoffm. A2, A3, C2, D2, D3 - (K)
14. Brachythecium rubens Sull. (Br.) Schimp. A3, B3, C2, D2, D4 - (S)
15. Brachythecium sabulosum (Bruch ex Br.) Hoffm. A3, B3, C2, D2, D4 - (S)
16. Brachythecium glareosum (Bruch ex Br.) Hoffm. A3, B3, C2, D2, D4 - (S)
17. Brachythecium rubens Sull. (Br.) Schimp. A3, B3, C2, D2, D4 - (S)
18. Brachythecium rubens Sull. (Br.) Schimp. A3, B3, C2, D2, D4 - (S)
19. Brachythecium sabulosum (Bruch ex Br.) Hoffm. A3, B3, C2, D2, D4 - (S)
20. Brachythecium rubens Sull. (Br.) Schimp. A3, B3, C2, D2, D4 - (S)
21. Bryum alpigenum Ehrh. ex Grout. A1, A2, A3, A4, B1, C2, C3, C4, D2, D4, E2 - (S)
22. Bryum argenteum Hedw. A2, A3, A4, B2, C2, C3, D2, D4, E2 - (S)
23. Bryum argenteum Hedw. A2, A3, A4, B2, C2, C3, D2, D4, E2 - (S)
24. Bryum atrorubens agg. A3, C2 - (K)
25. Bryum caespiticium Hedw. A2, A3, C2, D2, D3, E2, E4 - (S)
27. Bryum capillare Hedw. A2, B3, C2, D2, D4, E2 - (S)
28. Bryum crebrifolium Taylor C3, D2, E4 - (R)
29. Bryum dichotomum Hedw. A2, A3, C2, D2, E2, E4 - (K)
30. Bryum intermedium (Brid.) Blandw. - B2, C2, C3, D2 - (K)
31. Bryum kunzei Hornsch. A2, A3 - (K)
32. Bryum moravicum Podp. D4 - (K)
33. Bryum pallens Sw. B2, D2, D4, E2 - (K)
34. Bryum pallescens Schleich. ex Schwaegr. B2, C2, D2, D4 - (K)
35. Bryum pseudotriquetrum (Hedw.) P. Gaertn. et al. D2, E2, E4 - (K)
36. Bryum subspeculatum Hampe C3 - (R)
37. Bryum turbinatum (Hedw.) Turner D2 - (R)
38. Callicladium haldanianum (Grew.) H. A. Crum D4 - (R)
39. Callicladium cespitosum (Hedw.) Loeske D3 - (R)
40. Campylidium chrysophyllum (Brid.) R. S. Choppa D3, E4 - (R)
41. Campylium calcaratum (Crundw. and Nyholm) Hedenas D4 - (R)
42. Ceratodon purpureus (Hedw.) Brid. A2, A3, A4, C2, C3, C4, D2, D3, E2 - (S)
43. Cirriphyllum piliferum (Hedw.) Grout. C2, D3 - (R)
44. *Cratoneuron filicinum* (Hedw.) Spruce D1 - (K)
45. *Crossidium crassirnervae* (De Not.) Jur. A3, D3 - (R)
46. *Crossidium laxifilamentosum* W. Fray and Kurschner A3, D3 - (R)
47. *Crossidium squamiferum* (Viv.) Jur. A2 - (R)
48. *Ctenidium molluscum* (Hedw.) Mitt. C2 - (R)
49. *Cynodontium polycarpon* (Hedw.) Schimp. D2 - (R)
50. *Dickodontium pellucidum* (Hedw.) Schimp. D2, D3 - (K)
51. *Diranella heteromalla* (Hedw.) Schimp. D3 - (K)
52. *Diranella varius* (Hedw.) Schimp. D2 - (K)
53. *Diranum scoparium* Hedw. B3, D3 - (R)
54. *Didymodon cordatus* Jur. A3, C3, D3 - (R)
55. *Didymodon fallax* (Hedw.) R. H. Zander A3, C2, D4 - (K)
56. *Didymodon insulanus* (De Not.) M. O. Hill A3, B3, D2, D3, E2 - (K)
57. *Didymodon lirius* Hornsch. A2, B3, C2 - (K)
58. *Didymodon rigidulus* Hedw. A2, B2, B3, C2 - (S)
59. *Didymodon spadicus* (Mitt.) Limpr. D1, D2 - (R)
60. *Didymodon tophaceous* (Brud.) Lisa D1, D2 - (R)
61. *Didymodon vinealis* (Brud.) R. H. Zander A2, A3, B2, B3, C2, D2, D3, D4, E4 - (S)
62. *Diurichium flexicaule* (Schwagr.) Hampe B3, D3, D4 - (K)
63. *Diurichium heteromallum* (Hedw.) E. Britton B3, D3, D4 - (K)
64. *Diurichium pallidum* (Hedw.) Hampe B3, D4 - (R)
65. *Diurichium pseudullum* (Hedw.) Hampe D2, D4 - (R)
66. *Drepanolacis polygonus* (Schimp.) Hedens C1 - (R)
67. *Encalypta streptocarpa* Hedw. D2, D3 - (K)
68. *Encalypta vulgaris* Hedw. B3 - (R)
69. *Entostodon sp* B1, D1 - (R)
70. *Entodon concinnus* (De Not.) Paris D1 1
71. *Euclyadum verticillatum* (With.) Bruch und Schimp. D2 - (R)
72. *Eurhynchiastrum pulchellum* (Hedw.) Ignatov und Huttunen A2, C3, D2, D3 - (K)
73. *Eurhynchium striatum* (Hedw.) Schimp. C2, C3, D4 - (K)
74. *Fissidens adiantoides* Hedw. C3, D3 - (K)
75. *Fissidens bryoides* Hedw. D3 - (R)
76. *Fissidens dubius* P. Beauv. C3, D2 - (K)
77. *Fissidens taxifolius* Hedw. C3, D3 - (K)
78. *Funaria hygrometrica* Hedw. A2, A3, B3, C3 - (S)
79. *Grimmia orbicularis* Bruch ex Wilson D2 - (R)
80. *Grimmia pulvinata* (Hedw.) Sm. A2, B2, C2, D2, D4, E2, E3 - (S)
81. *Grimmia trichophylla* Grev. B3, D1, E2 - (K)
82. *Gymnostomum aeroginosum* Sm. D1, D2 - (R)
83. *Gymnostomum calceareum* Nees and Hornsch. A2, B2 - (R)
84. *Herzogia seligeri* (Brud.) Z. Iwats. D4, E4 - (K)
85. *Hilpertia velenovskii* (Scheff.) R. H. Zander A3 - (R)
86. *Homalia trichomanoides* (Hedw.) Brud. D4 - (R)
87. *Homalotheicum aureum* (Spruce) H. Rob. A3 - (R)
88. *Homalotheicum lutescens* (Hedw.) H. Rob. D1, D2, D3, D4, C2, E2, E4 - (S)
89. *Homalotheicum phillipeanum* (Spruce) Schimp. C2, C4, D2, D4 - (K)
90. *Homalotheicum sericeum* (Hedw.) Schimp. B2, B3, C2, D2, D3, D4 - (S)
91. *Homomalum incurvatum* (Schrad. ex Brid.) Loeske D4, E4 - (K)
92. *Hygrothyngostegium tenax* (Hedw.) Jenn. A1, C2, D1, D2, D4 - (K)
93. *Hygrothyngostegium varium* (Hedw.) Monnier A3, C2, C4, D2, E2, E4 - (S)
94. *Hygrothlysum liriodendron* (Hedw.) Jenn. D1 - (R)
95. *Hyphnum andoi* A. J. E. Sm. D4 - (R)
96. *Hyphnum cupressiforme* Hedw. var. cupressiforme A2, A4, B2, C4, D2, D4, E2, E4 - (S)
97. *Hyphnum jutlandicum* Holmen and E. Warncke D4 - (R)
98. *Hyphnum lucinois* (Brud.) Hoffm. ex Brid. C4, D4 - (K)
99. *Hyphnum resupinatum* Taylor D4 - (K)
100. *Hyphnum tectorum* Brid. D4 - (R)
101. *Isotterygopsis muelleriana* (Schimp.) Z. Iwats. C4, D2, D4 - (K)
102. *Isotterygopsis pulchellum* (Hedw.) Z. Iwats. D4 - (R)
103. *Isothecium alopecuroides* (Lam. ex Dubois) Isov. C2, D2 - (K)
104. *Isothecium myosuroides* Brid. C2, D3, D4 - (S)
105. *Kindbergia praehonga* (Hedw.) Oehya A3, C3, D3, D4 - (K)
106. *Leptodictyum riparium* (Hedw.) Warnst. A2, B3, C4, D1 - (K)
107. *Lescuraea mutabilis* (Brud.) Lindb. ex I. Hagen D2, D3, D4 - (R)
108. *Leskea polycarpa* Hedw. A2, B2, C4, D1, D2, D3, D4, E2, E4 - (S)
109. *Leucoodon sciuroides* (Hedw.) Schwagr. D4 - (R)
110. *Mniium stellare* Hedw. D3 - (R)
111. *Orthonectia intricatum* (Hartm.) Schimp. C4 - (R)
112. *Orthonectia scintesens* (Dicks. ex Brid.) Schimp. D2 - (R)
113. *Orthotrichum affine* Schrad. ex Brid. C2, D1, D4, E2 - (K)
114. *Orthotrichum anomalum* Hedw. A2, B2, C2, D2, D4 - (S)
115. *Orthotrichum cupulatum* Hoffm. ex Brid. C2, E4 - (R)
116. *Orthotrichum diaphanum* Schrad. ex Brid. A2, B2, C2, C4, D1, D2, D4, E2, E4 - (S)
117. Orthotrichum lyelli Hook. and Taylor D4, E4 - (K)
118. Orthotrichum patens Bruch ex Brid. D4 - (R)
119. Orthotrichum pumilum Sw. D2, E4 - (R)
120. Orthotrichum rupestre Schlecht. ex Schwagr. D2, D4 - (K)
121. Orthotrichum speciosum Nees E4 - (R)
122. Orthotrichum stramineum Hornsch. ex Brid. E4 - (R)
123. Orthotrichum striatum Hedw. D2, D3, E4 - (R)
124. Orthotrichum tenellum Bruch ex Brid. D2 - (R)
125. Ozyrrhynchos lians (Hedw.) Loeske B3, C2, C3, D2, D3 - (S)
126. Ozyrrhynchos speciosum (Brid.) Warnst. C3, D1, D2 - (K)
127. Ozyystegus tenereosus (Hook. and Taylor) A. J. E. Sm. D2 - (R)
128. Palustriella commutata (Hedw.) Ochyra D1 - (R)
129. Phascum cuspidatum Hedw. A3, B3, C3, D3 - (K)
130. Physcomitrella patens (Hedw.) Bruch and Schimp. - B1, B3, D3 - (R)
131. Physcomitrium pyriforme (Hedw.) Bruch and Schimp. - D1, D3 - (R)
132. Plagiomnium affine (Blandow ex Facc.) T.J. Kop. E2 - (R)
133. Plagiomnium cuspidatum (Hedw.) T. Kop. C3 - (R)
134. Plagiomnium elatum (Bruch and Schimp.) T.J. Kop. D3, D4 - (R)
135. Plagiomnium medium (Bruch and Schimp.) T.J. Kop. D3 - (R)
136. Plagiomnium rostratum (Schr. T.) J. Kop. E2 - (R)
137. Plagiomnium undulatum (Hedw.) T. J. Kop. B3, C3, D3 - (K)
138. Plagiothecium cavifolium (Brid.) Z. Ivats. D3 - (R)
139. Plagiothecium meridionale (Schimp.) M.Fleisch. A2 - (R)
140. Platynium riparioides (Hedw.) Dixon C3, D3 - (K)
141. Pleurodictium acuminatum Lindb. D3 - (R)
142. Pleurodictium squarrosum (Brid.) Lindb. - C3, D3 - (K)
143. Polystichum commune Hedw. D3 - (R)
144. Pteris aquilina (Brid.) J. Shaw. - B1, B3 - (R)
145. Polytrichum commune Hedw. D3 - (R)
146. Pseudocrossidium horrustchianum (Schultz) R. H. Zander C3, D3 - (K)
147. Pseudoleskeella nervosa (Brid.) Nyholm D2, D4 - (K)
148. Pterygynandrum filiforme Hedw. D2, D4 - (K)
149. Psilostylon polyantha (Hedw.) Schimp. C4, D2, D3, D4, E4 - (S)
150. Rhynchosoriella tenella (Dicks.) Limpr. C1, C2, D2 - (K)
151. Rhynchosoriella teneriffae (Mont.) Dirks and Bouman C2 - (R)
152. Rhytidiadelphus loreus (Dicks.) Schimp. A2, A3, D3, D4, E3 - (R)
153. Rhytidiadelphus loreus (Blandow ex F. Weber and D. Mohr) Schimp. A2, B2, C2, D2 - (R)
154. Schistidium apocarpum (Hedw.) Bruch and Schimp. A2, B2, C2, D2 - (R)
155. Schistidium crassipilum H. H. Blom A2, B2, C2, D2 - (K)
156. Schistidium elegantulum H. H. Blom D2 - (R)
157. Schistidium helvetica (Schkuhr) Deguchi A2, B2, C2, D2 - (K)
158. Sciuro-hypnum flotowianum (Sendtn.) Ignatov and Huttunen C3 - (R)
159. Sciuro-hypnum plumosum (Hedw.) Ignatov and Huttunen C3, D2, D4 - (K)
160. Sclerohypnum populeum (Hedw.) Ignatov and Huttunen C2, C3, D4 - (K)
161. Sclerohypnum portulae (Brid.) L. F. Koch C2, D3 - (R)
162. Sclerohypnum calciolata J. J. Amann B2, C3, D2 - (K)
163. Sclerohypnum laevigata Brach. D2, D4, E2 - (K)
164. Sclerohypnum montana Nees D2 - (R)
165. Sclerohypnum papillosa (Wilson) Jur. D4, E4 - (K)
166. Sclerohypnum princeps (De Not.) Mitt. C2 - (K)
167. Sclerohypnum rufiformis (Bosch.) Cardot C3, D2 - (R)
168. Sclerohypnum rufus (Hedw.) F. Weber and D. Mohr A2, D2, D4, E2 - (S)
169. Sclerohypnum virens (De Not.) Ochyra D4, E2 - (R)
170. Taxiphium wissgrillii (Garov.) Wijk and Margad. D4 - (R)
171. Thuidium tamariscinum (Hedw.) Schimp. D3 - (R)
172. Tortellina fragilis (Hook. and Wilson) Limpr. B3 - (R)
173. Tortella tortuosa (Hedw.) Limpr. B3, D3 - (R)
174. Tortella inermis (Brid.) Mont. C2 - (R)
175. Tortella lanceolata R. H. Zander C3, D3 - (R)
176. Tortella muralis Hedw. var. aestiva Hedw. A3, C2, C4 - (R)
177. Tortella muralis Hedw. var. muralis A2, A3, B3, C2, C4, D2, E2 - (S)
178. Tortella schimperi M.J. Cano, O. Werner and J. Guerra D3 - (R)
179. Tortella subulata Hedw. B3, D2, D3 - (K)
180. Tortella truncata (Hedw.) Mitt. C3, D4 - (K)
181. Trichodon cylindricus (Hedw.) Schimp. D3 - (R)
182. Trichostomum brachyonion (Bruch A3, C2, C4, D2, E4 - (K)
183. Trichostomum crispum Bruch A2, A3, D3 - (R)
184. Ulota crispa (Hedw.) Brid. D2, D4 - (R)
185. Warnstorffia cananulata (Schoch.) Schock C4 - (R)
186. Weissia brachycarpa (Nees and Hornsch.) Jur. D2, D4 - (R)
187. Weissia controversa Hedw. D3 - (R)
DISCUSSION

Belgrade has rich bryophyte flora. However, hepatics are not abundant and any species does not enter the category of spread (S) within the investigated area. This gives us the idea on Belgrade climate where the very dry long summers combined with disturbed and non adequate habitats prevent the large presence of hepatics.

Among 187 moss taxa recorded species found up to two times which means rare (R) are the most presented in Belgrade (94 taxa). The 24 spread taxa (S) were recorded more than 7 times within Belgrade city area. Common moss taxa to record in Belgrade city (recorded by us 3-7 times) are 69.

According to the data obtained, Belgrade has many small microhabitats and contains many significant populations of some threatened Serbian and European mosses.

Three species (Calliergon halduanum (EN), Hylpernia velenovskyi (EN) and Hypnum aoid (VU) are nationally and/or internationally threatened taxa (Saboljević et al., 2004; ECCB, 1995). Further, eleven species are of lower risk in Serbia: Crossidium crassnavre, C. laxifilamentosum, Ditrichum pallidum, D. pussillum, Hygroamblystegium tenax, Isoterygonopsis pulchella, Physcomitrella patens, Physcomitrium pyriforme, Rhynchostegiella tenerifae, Schopodium touretii and Syncrichia papillosa. One data deficient species was recorded as well: Anomodon longifolius.

Especially interesting habitats are Belgrade fragile loess cliffs sites in Zemun, Bežanić, Donji Kalemegdan and Višnjicka Kosa with its specific cryptogamic flora and rare and endangered species like Hylpernia velenovskyi and Crossidium laxifilamentosum. The fragile ecology are already discussed by Saboljević (2003a, 2004) and Pöös et al. (2004).

The second record for Serbia of Schistidium elegantulum, known previously only from the road edge in Obrež, Srem (Saboljević, 2003b) was made, along the Sava on the concrete.

The bryologically richest site in wider Belgrade is Avala Mt. Data covers wider area of Avala Mt. can be found in Saboljević and Cvetić (2003).

Comparing Belgrade bryophyte diversity to the other European cities, it is one of the highest (Fig. 2). Even though, the sizes and the geographical positions of the cities compared are not tooo into consideration the urban flora of Belgrade is very rich and interesting not only from the diversity point but also from the biogeographical, ecological and taxonomic point of view.

Further, investigations in distribution and vegetational relationships among urban bryophytes are needed.

Fig. 2. Comparison of bryophyte diversity richness in some European cities (hep-hepatics, moss-mosses, bryo - bryophytes)

ACKNOWLEDGMENT

We acknowledge Grant No. 143015 of Serbian Ministry of Science.

REFERENCES

