Synthesis and Pharmacological Screening of 1-(2', b s4'-dimethoxyphenacyl)-4-hydroxy-4-phenylpiperidinium bromide

Syed I.H. Taqvi, Mohammad T. Aftab, Muhammad N. Ghayur, Anwar H. Gilani and Zafar S. Saiify
1Federal Urdu University of Arts, Science and Technology, University Road, Karachi, Pakistan
2Post Graduate Medical Institute, Baqai Medical University, Karachi, Pakistan
3Department of Biomedical and Biological Sciences, The Aga Khan University, Stadium Road, Karachi-74800, Pakistan
4Faculty of Pharmacy, University of Karachi, Karachi, Pakistan

Abstract: The intestinal and cardiovascular relaxant activities of a newly synthesized piperidine derivative, 1-(2', s4'-dimethoxyphenacyl)-4-hydroxy-4-phenylpiperidinium bromide were studied in isolated tissue preparations. The test compound was prepared by dissolving 4-hydroxyphenylpiperidine and 1-(4-methylphenacyl) bromide in acetone. The test compound exhibited dose-dependent relaxant effect on the spontaneous and K+ (75 mM)-induced contractions of isolated rabbit jejenum with respective EC50 values of 0.31 mM (0.09-0.96, 95% CI) and 0.61 mM (0.38-0.99). The Ca++ Channel Blocking (CCB) activity was confirmed when the test compound (0.1-0.5 mM) shifted the Ca++ dose-response curves to the right, similar to that produced by verapamil (0.1-1.0 μM), a standard CCB. When tested in Langendorff perfused rabbit heart preparation, it exhibited a negative chronotropic effect in atria and ventricles with respective EC50 values of 0.28 mM (0.01-8.79) and 0.37 mM (0.01-9.01) and also a negative inotropic effect in atria and ventricles with respective EC50 values of 0.91 mM (0.04-17.69) and 2.77 mM (0.23-32.96). In the isolated rabbit aorta, the test compound showed a dose-dependent vasodilator effect on K+ (75 mM)-induced contractions and norepinephrine (1 μM) peak responses with EC50 values of 0.55 mM (0.24-1.26) and 0.22 mM (0.13-0.38), respectively. The results showed that inhibitory effects of the piperidine derivative on intestinal and cardiovascular preparations are mediated possibly via blockade of voltage and receptor-operated Ca++ channels.

Key words: Piperidine analogue, spasmylytic, Ca++ antagonist, cardio-suppressant, vasodilator

INTRODUCTION

Synthetic piperidine analogues have been known as analgesics while newer studies have explored their potential as vasodilator and hypotensive agents[1-3]. Although there has been a growing interest, very few piperidine derivatives have been reported with a cardio-suppressant and Calcium Channel Blocking (CCB) profile. However, a few compounds have been reported in the literature, which have shown such characteristics. Bupivacaine[4], fentanyl, sufentanil and remifentanil[5], 4-arylpiperidine and 4-arylpiperidinol[6], meperidine[7] and N-n-butyralphaprodol iodide[8] are only a few with the proven ability to block influx via Ca++ channels.

In the present study we report the intestinal spasmylic, cardio-suppressant and vasodilator activities of 1-(2', s4'-dimethoxyphenacyl)-4-hydroxy-4-phenylpiperidinium bromide (Fig. 1), a new piperidine analogue chemically belonging to phenylpiperidine group of piperidine nucleus-containing compounds[9], possibly mediated via Ca++ antagonism.

MATERIALS AND METHODS

Synthesis of the test compound: Equimolar quantity of 4-hydroxyphenylpiperidine and 1-(4-methylphenacyl) bromide were dissolved in acetone and refluxed on a water
bath and the reaction was continuously monitored by TLC using the solvent system CHCl₃-MeOH in the ratio of 9:1. When all the starting material changed into product, the resulting solid material or the precipitate was collected by filtration and thoroughly washed to remove traces of reactant. It was then dissolved and recrystallized from ethyl alcohol: yield 70%, m.p. 176-178°C.

Spectral data

U.V. (MeOH) λ max nm: 351, 273 and 203
I.R. (KBr) ν/cm: 3250, 2650, 1630, 1570, 1250, 970 and 750.
E. l. M. S. m/z (relative int., %) 355 (M+-HBr, C₁₇H₁₆NO₄), 190 (100), 176 (24), 172 (20), 165 (13), 112 (7) and 84 (10)
1H-N. M. R. (CD3OD, 400 MHz) δ: 8.02 (1H, d, J = 9.43 Hz, H-6'). 7.55 (1H, dd, J = 9.43, 1.34 Hz, H-5'). 7.51 (2H, dd, J = 7.66, 1.34 Hz, H-2", 6") J = 7.36 (2H, t, J = 8.36 Hz, H-3", 5") 7.28 (2H, dd, J = 8.36, 1.57 Hz, H-4") 6.88 (1H, d, J = 1.34 Hz, H-3') 6.20 (2H, s, H-α). 400 (3H, s, Ar-OCH3), 3.91 (3H, s, Ar-OCH3), 3.45 (2H, dd, J = 17.62, 12.82, 3.17 Hz, H-2α, 6α). 2.54 (2H, dt, J = 17.82, 5.00 Hz, H-2βb). (2H, ddd, J = 18.09, 12.82, 5.00 Hz, H-3a, 5α) and 1.96 (2H, ddd, J = 18.09, 17.62, 2.65 Hz, H-3b, 5b)
C₁₇H₁₆BrNO₄ Formula Weight: 436.12

Drugs and chemicals: Acetylcholine (ACh), Norepinephrine (NE) and verapamil were obtained from Sigma Chemical Company, St. Louis, MO, USA while heparin injections BF were purchased from Rotex Medica, Trittau, Germany. The following chemicals were used to make the physiological salt solutions: potassium chloride (Sigma Chemical Company, St. Louis, MO, USA), calcium chloride, glucose, magnesium chloride, magnesium sulphate, potassium dihydrogen phosphate, sodium bicarbonate, sodium chloride, sodium hydrogen phosphate (E. Merck, Darmstadt, Germany) and Ethylenediamine Tetra-acetic Acid (EDTA) from BDH Laboratory Supplies, Poole, England. Stock solutions of all the chemicals were made in saline fresh on the day of the experiment.

Animals: Experiments performed complied with the rulings of the Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council[18]. Local male rabbits (around 1 kg) used in the study were housed in the animal house of the Aga Khan University under a controlled environment (23-25°C). Animals were given tap water ad libitum and a standard diet consisting of g/kg: flour 380, fibre 380, m.classes 12. NaCl 5.8, nutritive L 2.5, potassium metabisulphate 1.2, vegetable oil 38, fish meal 170 and powdered milk 150.

Isolated rabbit jejunum: Experiments were performed as described earlier[11]. Segments of rabbit jejunum tissue 2 cm long were suspended in 10 mL tissue baths containing Tyrode's solution, aerated with a mixture of 95% oxygen and 5% carbon dioxide (carbogen) and maintained at 37°C. The composition of Tyrode's solution in mM was: KCl 2.68, NaCl 136.9, MgCl₂ 1.05, NaHCO₃ 11.90, NaH₂PO₄ 0.42, CaCl₂ 1.8 and glucose 5.55. Intestinal responses were recorded isotonically using Harvard student oscillographs and isotonic transducers. Each tissue was allowed to equilibrate for at least 30 min before the addition of any drug. Under these conditions, rabbit jejunum exhibits spontaneous rhythmic contractions, allowing testing of relaxant (spasmolytic) activity directly with out the use of an agonist.

Determination of Ca²⁺ antagonist activity in rabbit jejunum: To assess whether the spasmolytic activity of the test compound was mediated through CCB, K⁺ (75 mM) was used to depolarize the preparations[15]. High K⁺ (75 mM) was added to the tissue bath, which produced a sustained contraction. The test compound was then added in a cumulative fashion to obtain concentration-dependent inhibitory responses[13]. The relaxation of intestinal preparations, precontracted with K⁺ (75 mM) was expressed as percent of the control response mediated by K⁺. Contraction of smooth muscle induced by K⁺ is known to be mediated, via influx of Ca²⁺ from extracellular fluid and a substance, which inhibits this contraction, is considered to act through blockade of Ca²⁺ channels[14].

To confirm the Ca²⁺ antagonist activity of the test compound, the tissue was allowed to stabilize in normal Tyrode's solution, which was then replaced with Ca²⁺-free Tyrode's solution containing EDTA (0.1 mM) for 30 min in order to remove Ca²⁺ from the tissues. This solution was further replaced with K⁺-rich and Ca²⁺-free Tyrode's solution, having the following composition (mM): KCl 50, NaCl 91.04, MgCl₂ 1.05, NaHCO₃ 11.90, NaH₂PO₄ 0.42, glucose 5.55 and EDTA 0.1. Following an incubation period of 30 min, control Dose Response Curves (DRCs) of Ca²⁺ were obtained. When the control DRCs of Ca²⁺ were found super-imposable (usually after two cycles), the tissue was pretreated with the test compound for 60 min to test the possible CCB effect. The DRCs of Ca²⁺ were reconstructed in the presence of different concentrations of the test compound while verapamil was used as a positive control.

Langendorff perfused rabbit heart: Whole hearts were obtained from healthy rabbits (male, 1 kg). Heparin (5000 I.U.) was injected (i.p) 1 h prior to isolation of the
whole hearts. After cervical dislocation, hearts were excised rapidly and mounted on Langendorff apparatus as quickly as possible. Kreb’s-Henseliet solution perfused the heart retrogradely, aerated by carbogen at thermostatically controlled temperature (37°C) with pH of 7.4. Atrial and ventricular activities were recorded simultaneously and separately by two different Harvard isotonic transducers. Approximately 60 min were allowed to each heart adapt to the new environment and to exhibit sino-atrial nodal pattern of the cardiac activity. Any heart showing an abnormal pattern was discarded. After taking 10 min of equilibrium period, the test compound was added in ascending order. For each dose, 10 min were allowed to achieve the peak effect. Changes in atrial and ventricular activity were calculated when maximal effect persisted for 5 min or more[18].

Isolated rabbit aorta: Rabbits were sacrificed by cervical dislocation. The descending thoracic aorta was removed and cut into 2-3 mm wide rings which were individually mounted in 20 ml tissue baths containing Kreb’s-Henseliet solution (composition in mM: NaCl 115.0, KCl 4.70, CaCl2 2.50, NaHCO3 25.0, MgSO4.7H2O 1.50, K2HPO4 2H2O 1.20 and glucose 11.0) at 37°C and aerated with carbogen gas. A resting tension of 2 g was applied to each tissue and an equilibrium period of 1 h was allowed before any experimentation. The changes in isometric tensions of the rings were measured via a force-displacement transducer (FT-03) using a Grass Model 7 Polygraph. Following an equilibrium period of 1 h, the tissues were stabilized with a fixed dose of NE (1 μM). The tissues were considered stable only when similar responses were obtained from the repeated doses of NE (1 μM). Effect of the test compound was first determined on the resting baseline of the tissue to see if it has any vasoconstrictor effect. Later it was tested for any ability to relax the high K+ (75 mM)-induced contractions or control NE (1 μM) peak responses. The ability of the extract to relax K+ (80 mM)-induced contractions would indicate L-type voltage-dependent CCB mode of vasodilation while inhibition of the NE-peak responses would signify the blockade of the Ca2+ influx through the receptor-operated Ca2+ channels[16]. Procedure for the latter possibility involved incubating the control NE responses with increasing doses of the test compound for 1 h.

Statistical analysis: All the data expressed are mean±standard error of mean (SEM, n = number of experiments). The statistical parameter applied is the paired Student’s t-test with p<0.05 noted as significantly different (GraphiPAD program, GraphPAD, San Diego, CA, USA). Concentration-response curves were analyzed by non-linear regression (GraphPAD program).

RESULTS

Effect on rabbit jejunum: When tested on the spontaneously contracting rabbit jejunum, the test compound caused a dose-dependent (0.005-0.5 mM) relaxant activity (Fig. 2) with an EC50 value of 0.31 mM (0.09-0.96, 95% CI, n = 3). When tested on the high K+ (75 mM)-induced contractions, the test compound exhibited a dose-dependent (0.005-0.5 mM) inhibition (Fig. 2) with an EC50 value of 0.61 mM (0.38-0.99, n = 3). The interaction with Ca2+ channels was further studied in jejunum, which is known to be quick in responding to spasmylytic activity. The test compound dose-dependently (0.1-0.5 mM, n = 4) shifted the Ca2+ dose-response curves to the right (Fig. 3A), similar to that produced by verapamil (0.1-1.0 μM, n = 3, Fig. 3B).

Effect on Langendorff perfused rabbit heart: The test compound produced a dose-dependent (0.0001-4 mM) negative chronotropic effect (Fig. 4A) in the atrial and ventricular preparations with EC50 values of 0.28 mM (0.01-8.79, n = 5) and 0.37 mM (0.01-9.01, n = 5).

Fig. 2: Dose-response curves showing the dose-dependent spasmylytic effect of the test compound in spontaneous and high K+ (75 mM)-contracted isolated rabbit jejunum (values shown are mean±SEM, n = 3)
Fig. 3. Dose-response curves showing the inhibitory effect of increasing doses of (a) test compound and (b) verapamil on Ca\(^{2+}\) concentration-response curves, constructed in a Ca\(^{2+}\)-free medium, in rabbit jejunum preparations (values shown are mean±SEM, n = 3-4).

Fig. 4. Dose-response curves showing the inhibitory effect of increasing doses of the test compound on (a) rate and (b) force of atrial and ventricular contractions of rabbit whole heart perfused preparation (values shown are mean±SEM, n = 5).

respectively. When tested for an effect on the force of atrial and ventricular beating, the test compound exhibited a negative inotropic effect (Fig. 4b) with EC\(_{50}\) values of 0.91 mM (0.04-17.69, n = 5) and 2.77 mM (0.23-32.96, n = 5), respectively.

Effect on rabbit aorta: The test compound was found devoid of any contractile activity on the resting baseline however, when tested on high K\(^{+}\) (75 mM)-induced contractions, it showed a dose-dependent (0.01-2.5 mM) vasodilator effect (Fig. 5) with EC\(_{50}\) value of 0.55 mM (0.24-1.26, n = 3). Likewise, the test compound dose-dependently (0.02-2.5 mM) inhibited the control peak responses of NE (1 μM) with EC\(_{50}\) value of 0.22 mM (0.13-0.38, n = 3) after retreating the peaks with each of the test compound dose for 1 h (Fig. 5).

DISCUSSION

The test compound when tested on isolated rabbit jejunum exhibited dose-dependent relaxation of spontaneous and K\(^{+}\) (75 mM)-induced contractions indicating smooth muscle relaxant activity. The contractions of smooth muscles, including that of rabbit jejunum, are dependent upon an increase in the cytoplasmic free Ca\(^{2+}\), which activates the contractile elements\(^{[9]}\). The contraction induced by high K\(^{+}\) is dependent upon the entry of Ca\(^{2+}\) into the cells through
the Voltage-operated Channels (VOC) while inhibition of high K+-induced contraction is due to the result of blocked Ca2+ entry through these VOCs[14], a characteristic of CCBs. This possible CCB activity of the test compound was later confirmed when it suppressed the Ca2+-dose-response curves, constructed in a Ca2+-free medium, similar to verapamil, a standard CCB[14,17].

In view of the well established use of CCBs in cardiovascular disorders such as hypertension[18-20], the test compound was tested in Langendorff perfused rabbit heart and isolated aorta preparations. In the rabbit whole heart, the test compound induced a dose-dependent negative chronotropic and inotropic effect. The compound was equipotent (p=0.05) in exhibiting the inhibitory responses on rate and force of contraction in atria and ventricles. The reduction in rate of contraction is known to be due to reduction in trans-sarcolemmal Ca2+ influx[21] while reduction in force of contraction is the result of inhibition of transmembrane Ca2+ influx through L-type Ca2+ channels[22,23]. The cardiovascular activity of the test compound is consistent with the earlier findings of other piperidine derivatives with vasodilator and hypotensive activity[24,25].

The test compound was devoid of any vasoconstrictor activity on the resting baseline of the rabbit aorta but relaxed the high-K+-induced contraction, dose-dependently, thus reiterating the already observed CCB activity. The test compound was also able to inhibit, the increasing doses, NE (1 μM) peak responses indicating inhibition of Receptor Operated Ca2+ Channel (ROCs) as well and thus suggesting non-specific Ca2+-antagonist activity of the test compound.

The test compound showed intestinal spasmolytic activity along with cardio-suppressant and vasodilator activities mediated possibly through blockade of calcium channels.

REFERENCES