Anti-ulcerogenic Screening of Cichorium intybus L. Leaf in Indomethacin Treated Rats

1,R Rifat-uz-Zaman, 2,M Muhammad Shoaiib Akhtar and 3,M Muhammad Shafiq Khan

1,2Department of Pharmacy, Islamia University, Bahawalpur, Pakistan

3Faculty of Veterinary Sciences, University of Agriculture, Faisalabad-38040, Pakistan

\textbf{Abstract}: Although introduction of modern drugs to the classic anti-ulcer therapy has been revolutionized the treatment of peptic ulcer but the complete cure of the disease has yet to be discovered. In an effort to explore indigenous medicinal plants the powdered leaves of Cichorium intybus (CI) and its extracts i.e., aqueous, ethanol, were investigated for their anti-secretory and anti-ulcer activities in the albino rats (Sprague-Dawley, weighing 180-220 g) with gastric ulcer induced by indomethacin (25 mg kg-1, subcutaneous). The treatment of CI attenuated the indomethacin-induced changes in gastric juice volume, pH, acid-output and ulcer index in a dose-dependent manner. The aqueous (CI-Aq) and ethanol (CI-E) extracts (equivalent to 2.0 g kg-1 of body weight) of the powder also protected the rats against gastric effects induced by indomethacin. CI and its extracts showed significant acid buffering in vitro activities. The findings indicate that CI and its extracts possess active principle(s) that protect the gastric mucosa against indomethacin-induced gastric changes, possibly due to its antioxidant effect that inhibits lipid peroxidation.

\textbf{Key words}: Cichorium intybus, anti-ulcer, anti-secretory, ulcer index, acid buffering, indomethacin

\section*{INTRODUCTION}

\textit{Cichorium intybus}, L. (Syn: Cichory, Kasni) (Compositae) has long been used for the treatment of different diseases in the traditional medicine. It has been prescribed in various forms for the treatment of Gastrointestinal (GIT) disorders including gastric ulcers. The plant is abundantly found in Pakistan (Kirtikar and Basu, 1987). Its young leaves have long been used as salad. All parts of the plant contain a bitter tasting milky white juice that can stimulate the appetite (Limami \textit{et al.}, 1988; Kalantari and Chang, 1997). Plant has been found to be useful in thirst, headache, inflammation of eye and throat, enlargement of spleen, fever and vomiting (Aktay \textit{et al.}, 2000; Amirghoferan \textit{et al.}, 2000). It has been reported to possess stomachic, diuretic, antimicrobial actions and its seeds are considered tonic for brain. (Lee \textit{et al.}, 2000; Kim and Shin, 1998). The alcoholic extract of seeds has been found to possess the anti-hepatotoxic activity [Ahmed \textit{et al.}, 2003] The alcoholic extract of roots has been shown anti-tumour effect against Ehrlich ascites carcinoma in mice (Hazza \textit{et al.}, 2002). Alkaloids, adenosine and zeatin, carbohydrates like fructose and glucose, sesquiterpenes including cichoriol A, B, C, crepidinaside B, sonechuside A, C and traces of Zn2+, Si4+, K+, Na+, Mg2+ and Fe2+ have been reported to be present in the roots (Roberson, 2000; Rees and Harborne, 1984; Molan \textit{et al.}, 2003). Astragalin, kaempferol-3-O-β-D-glucuronoids (flavonoids), ascorbacin and ascucrin (coumarins) have also been isolated from leaves while apigenin, apigenin-7-0-α-l-arabinoside and cyanaroside (flavonoids) in aerial parts of the plant (Kisiel and Zielinska, 2001; Bais \textit{et al.}, 1999; Hebette \textit{et al.}, 1998). The presence of alpha-amyrin, taraxerone, baumacetyl acetate and beta-sitosterol has also been reported to be isolated from roots (Du \textit{et al.}, 1998).

\section*{MATERIALS AND METHODS}

\textbf{Plant drug and extracts}: Cichorium intybus, leaf (CI) was purchased locally from herbal dealer in Bahawalpur-Pakistan. The leaves were authenticated and compared with standard in the herbarium maintained by Department of Botany, University of Agriculture, Faisalabad and a sample has been preserved in the Pharmacognosy laboratory, Department of Pharmacy, Islamia University Bahawalpur during 2002-2003. The shade-dried leaves were finely powdered to the mesh size 200 before the experimental use (Rifat-uz-Zaman \textit{et al.}, 2004). The aqueous extract was prepared by maceration; 1.0 kg of the powder was soaked in about 1.5 L of distilled water for 24 h with occasional shaking. The extract was decanted; remaining material was re-extracted in the distilled water twice similarly. The collective extract was dried completely by Rotavapour at 37°C. The ethanol extract was also prepared by the same method (Rifat-uz-Zaman \textit{et al.}, 2004).

\textbf{Chemicals}: The analytical grade chemicals were used in this study, which obtained from E. Merck (Darmstadt, FRG), BDH Poole (England) and Sigma Chemical Co. (USA).

\textbf{Corresponding Author}: Dr. Rifat-uz-Zaman, Department of Pharmacy, Islamia University, Bahawalpur, Pakistan

166
Table 1: Effects of *C. intybus* leaf powder and its aqueous and ethanol extracts on gastric secretion volume, pH, acid-output and ulcer index in rats

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Treatments</th>
<th>Volume (mL)</th>
<th>pH</th>
<th>Acid Output (mEq/100 g/4 h)</th>
<th>Ulcer Index (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal (Untreated control)</td>
<td>2.20±0.06</td>
<td>2.82±0.01</td>
<td>2.92±0.15</td>
<td>2.62±0.26</td>
</tr>
<tr>
<td>2</td>
<td>Indomethacin (25 mg kg⁻¹ s.c.) (Treated Control)</td>
<td>8.6±0.45**</td>
<td>1.08±0.26**</td>
<td>340.23±14.21**</td>
<td>40.83±2.47**</td>
</tr>
<tr>
<td>3</td>
<td>C. intybus leaf (1.0 g kg⁻¹ orally) + Indomethacin (25 mg kg⁻¹ s.c.)</td>
<td>3.47±0.09**</td>
<td>1.70±0.07*</td>
<td>49.45±2.24**</td>
<td>20.64±1.41**</td>
</tr>
<tr>
<td>4</td>
<td>C. intybus leaf (1.5 g kg⁻¹ orally) + Indomethacin (25 mg kg⁻¹ s.c.)</td>
<td>3.1±0.10**</td>
<td>1.79±0.05*</td>
<td>33.52±2.33**</td>
<td>18.50±1.26**</td>
</tr>
<tr>
<td>5</td>
<td>C. intybus leaf (2.0 g kg⁻¹ orally) + Indomethacin (25 mg kg⁻¹ s.c.)</td>
<td>2.80±0.05**</td>
<td>2.15±0.08**</td>
<td>14.16±1.28**</td>
<td>8.57±0.15**</td>
</tr>
<tr>
<td>6</td>
<td>Aqueous extract of C. intybus leaf (2.0 g kg⁻¹ orally) + Indomethacin (25 mg kg⁻¹ s.c.)</td>
<td>3.43±0.06**</td>
<td>2.70±0.06**</td>
<td>6.33±0.60**</td>
<td>12.14±0.85**</td>
</tr>
<tr>
<td>7</td>
<td>Ethanol extract of C. intybus leaf (2.0 g kg⁻¹ orally) + Indomethacin (25 mg kg⁻¹ s.c.)</td>
<td>5.43±0.15**</td>
<td>1.51±0.05*</td>
<td>120.89±2.45**</td>
<td>21.87±1.76**</td>
</tr>
</tbody>
</table>

Indomethacin: significant from untreated control (Normal) *p<0.05;** p<0.001, Test drugs: significant from treated control (Indomethacin) *p<0.05;**p<0.001. All the other values are NS (p>0.05) from treated control (Indomethacin). Mean±SEM = Mean values±Standard Error of Means of six experiments.

Test animals: Healthy adult albino male rats (Sprague-Dawley) weighing 180-220 g each were used in this study. The animals were housed under standard conditions of temperature (23±1°C), humidity (55±15%) and 12 h light/dark (7.00 am-7.00 pm). The rats were allowed to eat ad libitum (M/S Lever Brothers, Rahim Yar Khan-Pakistan) and were fasted for 24 h prior to their experimental use. (Rifat-uz-Zaman et al., 2004). The use of animals in this study was in accord to the principles and guidelines of the Canadian Council on Animal Care.

Acid buffering activity: Five hundred milligram of CI powder and CI-Aq, CI-E (Equivalent to 500 mg of powder) dissolved in 2.0 mL of distilled water each treated with 10 mL of HCl solution, pH 1.0 separately. 2.0 mL of distilled water was added to the controlled test tubes in addition to above 10 mL of HCl solution. The final pH values were recorded after 1 and 30 min (Rifat-uz-Zaman et al., 2005).

Pepsin binding capacity: The 500 milligram of CI powder and its equivalent CI-Aq and CI-E extracts were added into separate test tubes to 1 mL of pepsin solution, 2 mg mL⁻¹ each. 4 mL of 0.2 N HCl buffered with 1 mL of 0.2 N sodium citrate solutions to ensure the pH 1.6 was allowed to react. The excess pepsin was treated with protein (bovine serum albumin, 5 mg mL⁻¹) Biuret reagent was used to recover the excess protein (Rifat-uz-Zaman et al., 2005).

Induction of gastric ulcer: The experimental gastric ulcers in rats were produced by the modified method of Yoshikawa et al. (1993). The pylorus of 24 h fasted rats were ligated under the light ether anesthesia. The test substances were given orally, immediately following pylorus-ligation and indomethacin was injected subcutaneously (s.c.) in the treated groups of rats. All the test drugs were given to the animals by oral route t.d.s (8.00 am, 3.00 and 10.00 pm) for 14 consecutive days while pylorus was ligated on the 15th day (Yoshikawa et al., 1993; Rifat-uz-Zaman et al., 2004).

The normal (untreated) and treated control groups received 3 mL kg⁻¹ of 2.5% gum tragacanth vehicle orally. (Rifat-uz-Zaman, et al., 2004). Rats of different treated groups received CI powder 1.0, 1.5 and 2.0 g kg⁻¹ of body weight while CI-Aq and CI-E (equivalent to 2.0 g kg⁻¹ of body weight of powder) orally, separately. The treated control and treated animals were administered a single dose of indomethacin 25 mg kg⁻¹ (s.c.) on 15th day of treatment. (Rifat-uz-Zaman et al., 2004). Takeuchi et al. (2001) operative procedure was adopted. After ligation of pylorus, drinking water was withheld and gastric juices were allowed to collect for a period of 4 h. The gastric contents were collected through the esophagus. The gastric mucosa was washed with 3 mL of distilled water. The gastric contents and washings were homogenized and centrifuged at 4000 rpm for 10 min. The stomachs were inflated with 10 mL of 1% formalin and the esophagus ligated. The stomachs were then immersed in 10% formalin for 10 min to fix the inner and outer walls. The glandular portions of stomachs were examined for gastric ulcers following the incisions along the greater curvatures of stomachs (Hirohashi et al., 1993; Takeuchi et al., 2001).

Determination of gastric juice volumes, pH and acid-outputs: The volume and pH of centrifuged gastric
Table 2: Acid buffering activities of C. inybus leaf and its extracts (in vitro)

<table>
<thead>
<tr>
<th>Drug used</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>1.00±0.013</td>
</tr>
<tr>
<td>Plant drug (500 mg)</td>
<td>1.61±0.009*</td>
</tr>
<tr>
<td>Aqueous extract plant</td>
<td>1.589±0.057*</td>
</tr>
<tr>
<td>Plant extract drug (equivalent to 500 mg)</td>
<td>1.12±0.0115*</td>
</tr>
<tr>
<td>Ethanol extract of plant</td>
<td></td>
</tr>
<tr>
<td>plant extract drug (equivalent to 500 mg)</td>
<td></td>
</tr>
</tbody>
</table>

Test drugs: significant from standard * p<0.05
Mean±SEM = Mean values±Standard Error of Means of ten experiments

Table 3: Pepsin binding capacities (% age) of A. graveolus and its extracts (in vitro)

<table>
<thead>
<tr>
<th>Drug used</th>
<th>Pepsin binding % age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>100</td>
</tr>
<tr>
<td>Plant drug (500 mg)</td>
<td>70.40±1.13**</td>
</tr>
<tr>
<td>Aqueous extract plant</td>
<td>0.61±0.053</td>
</tr>
<tr>
<td>drug (equivalent to 500 mg)</td>
<td></td>
</tr>
<tr>
<td>Ethanol extract of plant</td>
<td>0.35±0.032%</td>
</tr>
<tr>
<td>plant extract drug (equivalent to 500 mg)</td>
<td></td>
</tr>
</tbody>
</table>

Test drugs: significant from standard ** p<0.001
Mean±SEM = Mean values±Standard Error of Means of ten experiments

secretions were measured by pipette and pH meter, respectively (Hirohashi et al., 1993). The acid outputs were calculated by using the following equation according to the method of Ishizuka et al. (1996).

\[
\text{EqT} = \frac{100 \times \text{pH} \times 10^6 \times \text{Volume of gastric juice (mL)}}{100 \times \text{body weight of animal (g)}}
\]

Calculation of gastric ulcer index: Glandular portions of stomachs were examined under a simple microscope to locate the gastric lesions in the gastric mucosa as elongated black-red lines parallel to the long axis. The length (mm) of each lesion was measured and lesion index was calculated by adding the length of all the lesions in the glandular region (Hirohashi et al., 1993; Rifat-uz-Zaman et al., 2004).

Statistical analysis: The data was expressed as mean±SEM (Standard Error of Means) and analyzed statistically by the application of SPSS (Statistical Package for Social Sciences) for Windows version 7.5. The Student’s t test was applied and P values were determined. Differences were considered non-significant at p>0.05, significant at p<0.05 and highly significant at p<0.001 (Sanders, 1990).

RESULTS

Acid-buffering and pepsin-binding effects: C1 powder increased significantly (p<0.05) the pH of acidic solution from 1.0 up to 1.618±0.009. CI-Aq and CI-E were also significantly increased the pH levels of acidic solution. CI-Aq raised the pH from 1.0 up to 1.589±0.057 and CI-E from 1.0 up to 1.12±0.0115 (Table 2). However, CI exhibited highly significantly pepsin binding activity (70.40±1.13%) while CI-Aq and CI-E 0.61±0.053% and 0.35±0.032%, pepsin binding capacities, respectively (Table 3).

Anti-secretory and anti-ulcer effects: Oral administration of CI in 1.0-2.0 g kg⁻¹ body weight, doses prevented the changes in gastric juice volume, pH, acid-output and ulcer index (i.e., anti-ulcerogenic effect), induced by indomethacin in a dose-dependent manner. The effects were highly significantly (p<0.001) more with 2.0 g kg⁻¹ dose of the powder. CI-Aq and CI-E equivalent to 2.0 g kg⁻¹ of the powder also caused high significant (p<0.001) inhibition of gastric changes in the treated rats (Table 1).

DISCUSSION

Indomethacin and NSAIDs (non-steroidal anti-inflammatory drugs) have been known to be the potent inhibitor of cyclo-oxygenase enzyme (Levine, 2001). Kapui et al. (1993) have been reported a progressive decrease in the mucosal contents of PG1₂, PG2 and TXA₂ following indomethacin treatment while increase in Leukotrienes (LTs). The selective inhibition of cyclooxygenase pathway increases the level of LTs in gastric mucosa, which has potent action on mucosal vasculature leading to inflammation and pain (Kapui et al., 1993; Reeves and Stables, 1985). It also potentiate further the secretary effects elicited by histamine due to the inhibition of PG₂ synthesis. Therefore, gastric ulcer and erosion formation is accompanied by progressive decrease in the PG₂ synthesis (Reeves and Stables, 1985). It has been found that programmed cell death (apoptosis) is an intrinsic part of organismal development and aging (Tabuchi et al., 1994). The recent evidences have been shown that indomethacin and many other NSAIDs can cause apoptosis (Tabuchi et al., 1994). The damage in the stomach is activated further acid secretion by a stimulatory pathway in addition to a PGs, NO and Ca²⁺ dependent inhibitory mechanism. PGs may have a dual role in the regulation of acid secretion in the damaged stomach: an inhibitory effect at the parietal cell and an excitatory effect, through enhancing the release of mucosal histamine (Reeves and Stables, 1985; Tabuchi et al., 1994).

Therefore, indomethacin raised gastric secretion volume and acid out-put while decreased pH highly significantly in the treated control group of rats in comparison to control group of animals. Similarly gastric ulcer formation was also caused by indomethacin highly significantly (Table 1) in the treated control animals. The similar gastric changes have already been reported due to its apoptosis activity (Smith and Marnett, 1991; Gurbuz et al., 2002).

C. inybus leaf (CI) and its extracts showed significant acid-buffering activities (in vitro). CI bound to
pepsin highly significantly while CI-Aq and CI-E did not show such in vitro pepsin binding activity (Table 2 and 3). In the rats having indomethacin-induced ulcerations, CI in 1.0-2.0 g kg⁻¹ doses inhibited the gastric changes induced by indomethacin in a dose-dependent manner and 2.0 g kg⁻¹ dose exhibited maximum preventive effects. CI-Aq and CI-E also showed similar gastric effects (Table 1). The results are in accordance with Gurbuz et al. (2002).

Many workers have indicated the pro-oxidant and anti-oxidant activities of CI and its extracts (Papetti et al., 2002; El and Karakaya, 2004). Pieroni et al. (2002) have further been reported their strong xanthine oxidase inhibition (in vitro) in addition to free radical scavenging activity.

The attenuation of indomethacin gastric effects indicates that the test drugs may interfere with the indomethacin-induced apoptosis activity. Yoshikawa et al. (1993) have been reported that the lipid peroxidation induced by oxygen radicals plays an important role in the pathogenesis of indomethacin-induced gastric mucosal changes as well as in gastric injuries. Moon et al. (2000) have shown that oxygen free radicals serve as second messengers in pro-inflammatory signal transduction pathways. Both oxygen active species, such as O₂⁻, H₂O₂, HO⁻ and lipid radicals, such as ROO⁻, RO⁻ and hydroperoxides, are generated during lipid peroxidation and metabolism (Kwiecien et al., 2001). Therefore, it may further be speculated that the gastric ulcer formation and anti-secretory responses of CI, CI-Aq and CI-E exerted due to the free radical scavenging/antioxidant activity. The data has been suggested that the anti-ulcer active principle(s) of CI is/are both water and ethanol extractable (Table 1).

In conclusion, the reported results have validated the folkloric use of the drug tested for use in the therapy of gastric ulcer disease. In particular, the present studies have pointed out possible gastric anti-secretory and anti-ulcer effects of the CI and its extracts. Nevertheless, detailed chemical studies followed by pharmacological investigations are still required to isolate the pure active principle(s) of the CI and to elucidate the precise mechanism(s) of anti-ulcer actions.

REFERENCES

chicory influences serum and liver lipid
concentrations, cecal short-chain fatty acid
concentrations and fecal lipid excretion in rats. J.
Nutr., 128: 1731-1736.
Kistel, W. and K. Zielinska, 2001. Guaianolides from
Cichorium intybus and structure revision of
Cichorium sesquiterpene lactones. Phytochemistry,
57: 523-527.
Kwiecien, S., T. Brzozowski, P.C. Konturek, S.I. Konturek,
M. Pawlik, R. Pajdo, D. Drozdowicz, A. Ptak and
E.G. Hahn, 2001. Effect of central and peripheral
actions of histamine and its metabolite N-alpha
methyl histamine on gastric secretion and acute
Limami, M.A., L.Y. Sun, C. Douat, J. Helgeson and
agrobacterium rhizogenes. Annual flowering in two
biennials, Belgian endive and arrot. Plant Physiol.,
Lee, K.T., J.I. Kim, H.J. Park, K.O. Yoo, Y.N. Han and
K. Miyamoto, 2000. Differentiation-inducing effect
of magnolialide, a 1 β-hydroxyeudesmanolide
isolated from Cichorium intybus, on human leukemia
Levine, L., 2001. Stimulated release of arachidonic acid
from rat liver cells by celecoxib and indomethacin.
Activity of Glycated Cross-Linked Proteins in Free
899: 168-181.
Molan, A.L., A.J. Duncan, T.N. Barry and W.C. McNabb,
2003. Effects of condensed tannins and crude
sesquiterpene lactones extracted from chicory on
the motility of larvae of deer lungworm and
gastrointestinal nematodes. Parasitol. Intl., 52:
209-218.
Papetti, A., M. Daglia and G. Gazzani, 2002. Anti- and pro-
oxidant activity of water-soluble compounds in
Cichorium intybus var. silvestre (Treviso red
Pieroni, A., V. Janiak, C.M. Durr, S. Ludeke, E. Trachsel
and M. Heinrich, 2002. In vitro antioxidant activity of
non-cultivated vegetables of ethnic Albanians in
Rees, S. and J. Harborne, 1984. Flavonoids and other
phenolics of cichorium and related members of the
lactucae (Compositae). Bot. J. Linn. Soc., 89:
313-319.
Reeves, J.J. and R. Stables, 1985. Effects of indomethacin,
piroxicam and selected prostanooids on gastric acid
secretion by the rat isolated gastric mucosa. Br. J.
Pharmacol., 86: 677-684.
Roberfroid, M.B., 2000. Cichory fructooligosaccharides
and the gastrointestinal tract. Nutrition, 16:
677-679.
Premilatory evaluation of Anethum graveolens fruit
in indomethacin-ulcer induced rats. J. Biol. Sci., 4:
151-156.
Protective effects of Polygonum viviparum L.
root and its extracts against lipid-peroxidation
induced by Indomethacin in Rats. Intl. J.
Pharmacol., 1: 224-228.
eンドperoxide synthase: structure and catalysis.
Mechanism of the Inhibition of Hog Gastric H1, K+-
ATPase by the Seleno-organic Compound, Ebselen.
Takeuchi, K., S. Kato, Y. Ogawa, K. Kanatsu and
M. Umeda, 2001. Role of endogenous prostacyclin in
gastric ulcerogenic and healing responses-a study
using IP-receptor knockout mice. J. Physiol. Paris,
95: 75-80.
Yoshikawa, T., Y. Naito, S. Nakamura, T. Kaneko,
S. Linuma and S. Takahashi et al., 1993. Effect of
Rebamipide on lipid peroxidation and gastric
mucosal injury induced by indomethacin in rats.