International Journal of Pharmacology

ISSN 1811-7775
A Review on the Role of Oxidative Stress and Inflammation in Necrotizing Enterocolitis and Benefits of the Phosphodiesterase Inhibitor Pentoxifylline

Shilan Mozaffari and Mohammad Abdollahi
Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran

Abstract: The condition of activated inflammation in the intestine is known as Necrotizing Enterocolitis (NEC) which is more frequent in premature infants. Various studies have been carried out to find effective protections or therapies based on recognized pathophysiology of the disease. In the present review, all possible mechanisms and existing evidences at experimental or clinical levels have been analyzed. The main target is the modulation of inflammation by use of immune modulators and anti-oxidants. Pentoxifylline (Ptx) exhibits immunomodulatory effects via decreasing the synthesis of tumor necrosis alpha (TNF-α), interleukin-6 (IL-6), interferon-gamma (INF-γ) and other pro-inflammatory cytokines. It exerts anti-oxidant properties via scavenging hydroxyl radicals and inhibiting the xanthine oxidase. Therefore Ptx is deemed an option in the management of NEC in premature infants if proper clinical trials confirm its safety in neonates.

Key words: Inflammatory bowel disease, oxidative stress, pentoxifylline, phosphodiesterase inhibitor, premature infants

INTRODUCTION

Necrotizing enterocolitis: A highly activated inflammatory response resulting in disruption of intestinal epithelium and bowel necrosis is known as Necrotizing Enterocolitis (NEC). NEC is considered as one of the prevalent emergency conditions mostly occurring in premature neonates. It affects approximately 10% of premature infants <1500 g (Claud, 2012), accompanied with high mortality and/or morbidity rate. Some of our known common symptoms are diarrhea, feeding intolerance, abdominal distention and bloody stools. Alongside the aggravation of inflammation, intestinal perforation, peritonitis and systemic hypotension occur and patients require intensive medical care. Regardless of various attempts, the exact cause of NEC still remains challenging. However, some of the pathophysiological mechanisms that have been suggested so far are illustrated in the Fig. 2-4. However three main mechanisms can be described.

The first symptom of NEC is a reduction of blood flow in the intestine, which results in intestinal ischemia. This hypoxia condition is usually made by oxygen-derived free radicals and hydroxyl radicals by the mediation of xanthine oxidase. These substances, besides leukocyte-derived free radicals, altogether, lead to an oxidant-mediated lipid peroxidation injury which is responsible for necrosis of intestine. Additionally, free radicals may increase vascular permeability and release of prostaglandins and leukotrienes (Okur et al., 1995; Erdener et al., 2004; Shah and Sinn, 2012; Caplan et al., 1990; Harpavat et al., 2012; Parks and Granger, 1983; Cuffetti et al., 1991; Rezaie et al., 2007) (Fig. 2).

Another involved factor is over-activity of the immune system and an imbalance between activated pro-inflammatory responses with anti-inflammatory protection. Consequently, the augmented cytokine release, the increased level of tumor necrosis factor alpha (TNF-α), as a key factor for inflammation cascades and an activation of toll like receptor-4 (TLR-4) have been demonstrated to contribute in the aggravation of

![Structure of pentoxifylline (C7H15N2O2)](image)

Corresponding Author: Mohammad Abdollahi, Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
the inflammatory response in the intestine (Travadi et al., 2006; Arciero et al., 2013; Uguralp et al., 2004; Quven et al., 2009a) (Fig. 3).

Furthermore, reduced production of mucus besides the alteration of mucosal defenses and intestinal microbiota may bring about infection and bacterial translocation which contributes to gut injury via disruption of intestinal integrity. Inducible nitric oxide (iNOS) is also thought to induce enterocytes apoptosis that impairs mucosal barrier

Fig. 2: Intestinal ischemia as a pathophysiological mechanism in NEC, GI: Gastrointestinal; PG: Prostaglandins

Fig. 3: Over-activity of immune system in NEC, NEC: Necrotizing enterocolitis; TLR: Toll like receptor; TNF: Tumor necrosis factor
PENTOXIFYLLINE

Ptx (Fig. 1) is a tri-substituted purine (1-(5-oxohexyl)-3,7-dimethylxanthine) methyl xanthine derivative that besides its phosphodiesterase inhibitory effect, improves blood rheology and viscosity by inhibiting platelet aggregation and increasing blood cells flexibility. Phosphodiesterase inhibitors have been demonstrated to be effective in different inflammatory conditions and protect cells from oxidative-stress (Freitas and Filipe, 1995; Badri et al., 2011; Rahimi et al., 2010; Ghiasti et al., 2012).

In addition, Ptx exhibits immunomodulatory effects via decreasing the synthesis of TNF-α, interleukin-6 (IL-6), INF-γ and other pro-inflammatory cytokines throughout mucosal injury or sepsis. In the recent years, different phosphodiesterase inhibitors have been found beneficial in inflammatory bowel disease (Travadi et al., 2006; Patole, 2007; Harris et al., 2010; Lauterbach et al., 1999; Haque and Pammi, 2008; Salari and Abdollahi, 2012; Salari-Sharif and Abdollahi, 2010).

Ptx exerts its anti-oxidant properties by scavenging hydroxyl radicals and xanthine oxidase inhibition (Erdener et al., 2004; Salari and Abdollahi, 2012; Rezvanifar et al., 2012; Khoshakhlagh et al., 2007). It is believed to inhibit the generation of free radicals from leukocytes and the release of reactive oxygen metabolites during ischemia (Ciuffetti et al., 1991).

In this respect, Ptx has been used in several inflammatory infectious and vascular diseases (Harris et al., 2010; Rezvanifar et al., 2012). In addition, Ptx has been used in several clinical studies as a treatment option in shock and sepsis. Although, Haque and Pammi (2011) observed that Ptx may decrease the duration of disease in infants with sepsis but it does not affect the risk of development and incidence of NEC (Haque and Pammi, 2011). Some other reports demonstrate an increased incidence of NEC in placebo group of infants with sepsis which did not receive Ptx (Lauterbach et al., 1999; Lauterbach and Zembala, 1996).

Ptx has also been introduced as a therapeutic option to reduce the mortality and morbidity in premature infants with NEC (Harris et al., 2010). Given the immunomodulatory effects and demonstrated anti-oxidant and free radical scavenging effects of Ptx, it may comprise considerable potential to be in the package for management of NEC (Table 2).

METHODS

In this study we have reviewed the pathophysiology of NEC and evidences for the beneficial effect of anti-oxidant therapy and Ptx in this disease. In order to collect all evidences including experimental investigations and clinical trials, we used broad databases such as Google Scholar, PubMed, Scopus and Web of Science without date limitations.

RESULTS AND EVIDENCES

As summarized in Table 1, several studies have established animal models of ischemia and oxidative stress to induce NEC in the rat. These models mainly
Table 1: Experimental studies on the efficacy of several drugs on NEC

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Investigated substance</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozdemir et al. (2012)</td>
<td>Cold stress/hypoxia-peroxia induced NEC in rats</td>
<td>NAC</td>
<td>Protective effect on intestinal injury</td>
</tr>
<tr>
<td>Tayman et al. (2012)</td>
<td>Cold stress/hypoxia-peroxia induced NEC in rats</td>
<td>NAC</td>
<td>Severity of bowel damage; MDA, MPO, XO; TAS</td>
</tr>
<tr>
<td>Zani et al. (2008)</td>
<td>Hypertonic formula/hypoxia oral LPS induced NEC in rats</td>
<td>Captopril</td>
<td>Severity of bowel damage; Mesenteric ischemia</td>
</tr>
<tr>
<td>Feng et al. (2006a,b)</td>
<td>Cold stress/hypertonic formula/hypoxia oral LPS induced NEC in rats</td>
<td>HB-EGF</td>
<td>Incidence & severity of NEC; Apoptosis</td>
</tr>
<tr>
<td>Cadir et al. (2008)</td>
<td>Hypoxia-reoxygenation induced NEC in rats</td>
<td>Omeprazole/Vitamin E</td>
<td>Severity of histopathological damage in intestine</td>
</tr>
<tr>
<td>Guven et al. (2009b)</td>
<td>Cold stress/hypoxia induced NEC in rats</td>
<td>HBO therapy</td>
<td>Severity of inflammation in NEC</td>
</tr>
<tr>
<td>Guven et al. (2011)</td>
<td>Cold stress/hypoxia induced NEC in rats</td>
<td>Melatonin</td>
<td>Severity of NEC</td>
</tr>
<tr>
<td>Guven et al. (2009a)</td>
<td>Cold stress/hypoxia induced NEC in rats</td>
<td>Ozone</td>
<td>Severity of inflammation in NEC</td>
</tr>
<tr>
<td>Okur et al. (1995)</td>
<td>Hypoxia-reoxygenation induced NEC in rats</td>
<td>Vitamin E</td>
<td>Severity of NEC</td>
</tr>
</tbody>
</table>

HH-EGF: Heparin-binding epidermal growth factor-like growth factor; HBO: Hyper baric oxygen; INF: Interferon; LPS: Lipopolysaccharide; MDA: Malondialdehyde; MPO: Myeloperoxidase; NAC: Acetylcysteine; NEC: Necrotizing enterocolitis; TAS: Total antioxidant status and XO: Xanthine oxidase

Table 2: Details of experimental studies using Ptx for treatment of NEC

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hammerman et al. (1999)</td>
<td>Intestinal IR induced NEC in rats</td>
<td>Histopathologic signs of injury; TBARS</td>
</tr>
<tr>
<td>Travadi et al. (2006)</td>
<td>Cold stress/hypoxia induced NEC in rats</td>
<td>Severity of NEC</td>
</tr>
<tr>
<td>Erdener et al. (2004)</td>
<td>Hypoxia-reoxygenation induced NEC in rabbits</td>
<td>No protective effect on NEC</td>
</tr>
</tbody>
</table>

IR: Ischemia reperfusion; NEC: Necrotizing enterocolitis; Ptx: Pentoxifylline; TBARS: Lipid peroxidation; XO: Xanthine oxidase

Discussion

NEC is known as one of the causes of death in neonatal intensive care units that is prevalent in premature newborns. Prematurity, alteration in gastrointestinal microbial flora or infection, history of use of broad spectrum antibiotics, enteral feeding and sepsis are among proposed pathophysiologies (Luedtke et al., 2012; Hsueh et al., 2003). The maternal breast milk and conservative feeding practices are suggested as one of the preventive factors to reduce NEC prevalence by influencing the colonization of microbial flora (Luedtke et al., 2012). Amongst investigated substances, Ptx may be of great interest based on results of experimental studies (Table 2) and due to its beneficial potentials for NEC management. Nevertheless, the safety profile of Ptx should be noted especially when used in combination with other drugs in the management of sepsis in neonates. Haque and Pamm (2003, 2011) showed that Ptx in combination with antibiotics reduces the mortality in affected infants with sepsis without leaving any adverse effects. Ptx does not result in any cardiac or bronchodiatory side effects when used in therapeutic doses (Harris et al., 2010). It caused no thrombocytopenia and bleeding in infants with sepsis or NEC (Harris et al., 2010). Additionally, Downdard et al. (2012) investigated the direct peritoneal resuscitation method in an animal model of NEC. They suggested that this method could be effective in improving the blood flow in the bowel of affected animals. Thus, Ptx has the potential to preserve microvascular blood flow and can be considered as a preference in management of NEC. Collectively, further controlled clinical trials should be established to confirm the beneficial preventive and/or...
therapeutic use of Ptx in NEC, considering its safety issues in neonates as current evidences are mostly based on experimental reports and no clinical trial has been performed in NEC yet.

ACKNOWLEDGMENTS

This study is the outcome of an in-house financially non-supported study. Authors thank help of National Elite Foundation and Iran National Science Foundation (INSF).

REFERENCES

