INTERNATIONAL JOURNAL OF
POULTRY SCIENCE

ANSI.net
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan
Mob: +92 300 3008585, Fax: +92 41 8815544
E-mail: editorjps@gmail.com
Diagnosis of *Ornithobacterium rhinotracheale*

Hafez Mohamed Hafez
Institute of Poultry Diseases, Free University Berlin
Kosserstr. 21, 14195 Berlin, Germany
E-mail: hafez@zedat.fu-berlin.de

Abstract: Respiratory disease conditions are continuing to cause heavy economic losses in the poultry industry. Since Dec. 1981 respiratory manifestation with different clinical courses have been observed in poultry flocks in different countries. Bacteriological examinations have resulted in isolation of pleomorphic gram-negative rods (PNGR). The detected bacteria were designated as *Ornithobacterium rhinotracheale* gen. nov., sp. nov. in the rRNA-Superfamily V. The present paper reviews the literatures related to ORT current situation on isolation and identification, serotyping of ORT as well as differential diagnosis from other similar bacterial infections.

Key Words: Respiratory disease, *Ornithobacterium rhinotracheale*

Introduction
Respiratory disease conditions are continuing to cause heavy economic losses in the poultry industry worldwide. Since December 1981, respiratory manifestation with different clinical courses have been observed in poultry flocks in different countries (DuPreez, 1992; Charlton et al., 1983; Hafez et al., 1983; Hinz et al., 1994; Van Beek et al., 1984). Bacteriological examinations have resulted in isolation of pleomorphic gram-negative rods (PNGR). The detected bacteria were designated as *Ornithobacterium rhinotracheale* gen. nov., sp. nov. in the rRNA-Superfamily V (Vandamme et al., 1994).

Ornithobacterium rhinotracheale (ORT) has been recognized in many countries worldwide and incriminated as a possible additional causative agent in respiratory disease complex. Although, ORT has been proved to be highly sensitive to different chemical disinfectants (Hafez and Schulze, 1998), currently, ORT infection appears to have become endemic and can affect every new restocking even in previously cleaned and disinfected houses especially in areas with intensive poultry production as well as in multiple age farms.

The disease is spread horizontally by direct and indirect contact. Vertical transmission is suspected, since some recent research has isolated ORT at low incidence from reproductive organs and hatching eggs, infertile eggs and dead embryos (Tanyi et al., 1995; Van Empel, 1997; Nagaraja et al., 1998; El-Gohary, 1998). It is however, not yet known if this vertical transmission is caused by ovariial or cloacal contamination. ORT has been isolated from chicken, chukar partridge, duck, goose, guinea fowl, gull, ostrich, partridge, pheasant, pigeon, quail, rook and turkey. Within this bacterial species several serotypes and isolates with different virulence seem to exist (Ryll et al., 1996; Travers, 1996; Van Empel et al., 1996).

ORT is an acute highly contagious disease of chickens and turkeys. The severity of clinical signs, duration of the disease and mortality are extremely variable and are influenced by many environmental factors such as poor management, inadequate ventilation, high stocking density, poor litter conditions, poor hygiene, high ammonia level, concurrent diseases and the type of secondary infection (Hafez, 1996). Initial symptoms are nasal discharge, sneezing coughing and sinusitis followed in some cases by severe respiratory distress, dyspnoea, prostration and mortality. The symptoms are accompanied with a reduction in feed consumption and water intake. The lesions can include rhinitis, tracheitis, oedema, uni- or bilateral consolidation of the Lungs with fibropurulent exudates. Pericarditis, airsacculitis, peritonitis and enteritis could be detected (Van Empel and Hafez, 1999).

Laboratory diagnosis: Clinical signs and lesions are of little value in diagnosis, since many other infectious diseases can produce similar clinical signs and post mortem lesions. Accurate diagnosis must be substantiated by direct detection or isolation of the causative bacteria and/or indirectly through detection of antibodies using serological examination (Fig. 1).

Detection of the bacteria:
Polymerase chain reaction (PCR): A specific PCR can be performed using the primer combination OR16S-F1 (5'-GAG AAT TAA TTT ACG GAT TAA G) and OR16S-R1 (5'-TTC GCT TGG TCT CCG AAG AT). This combination amplifies a 784 bp fragment on the 16S rRNA gene of *O. rhinotracheale*, but not of other closely related bacteria with which *O. rhinotracheale* could be confused (van Empel, 1998; Hung and Alvarado, 2001). In future PCR assays can also be optimised for the demonstration of ORT in tracheal swabs, eggs and environmental
Identification: On blood agar the colonies are small, grey-white, opaque, non-hemolytic and differ in diameter (1-3 mm). ORT cells are gram-negative pleomorphic rods. There is no growth on MacConkey agar. Isolated organisms produce oxidase but not indole. All isolates are β-galactosidase (ONPG) positive, catalase negative and most of them reacted positively in urea test. Recently, however, Günther et al. (2002) were able to isolate and identification of a cytochrome-oxidase negative strain of ORT from turkeys.

Biochemical identification using commercial biochemical test-kit (API 20 NE, Bio-Mérieux, France or API 20 NFT, USA) showed that 99.5 % of ORT strains give a reaction code of 022 000 4 (61 %) or 002 000 4 (38.5 %) in this system (Van Empel, 1998). Further identification could be carried out using API ZYM, or fatty acid profile (Charlton et al., 1993). Another commercial identification system, the RapID NF Plus system (Innovative Diagnostics, USA), did give high identification scores (Biodiscs: 4-7-2-2-6-4, 4-7-6-2-6-4, 6-7-6-2-6-4 or 6-7-2-2-6-4) when investigating 110 ORT strains (Post et al., 1997).

Typing of the isolates: **Serological typing**: The confirmation could be carried out using serological examination with known positive antisera in agar gel precipitation (AGP), ELISA (Van Empel, 1998; Hafez and Sting, 1999) or rapid slide agglutination (Bock et al., 1997; Back et al., 1998a). Currently 18 serotypes designated (A to R) seem to exist (Van Empel, 1998 and personal communication). Most of the chicken isolates belong to the serotype A and the turkey isolates are more heterogeneous and belongs to serotype A, B and D (Van Empel et al., 1996; Hafez, 1998; Van Empel, 1998).

Molecular biological typing: A further possibility for the typing is the using of PCR (S. detection) or using the random-amplified-polymeric-DNA (RAPD). Using the primers M13 (5-TAT GTA AAA CGA CGG CCA GT-3) and ERIC 1R (5'-ATG TAA GCT CCT GGG GAT TCA C-3'), variations were found between all tested serotypes PCR fingerprints with M13 and ERIC 1R primers are a useful tool for typing and epidemiological investigation of O. rhinotraceae isolates (Hafez and Beyer, 1997; Hung and Alvarado, 2001).

Using pulsed-field gel electrophoresis (PFGE) discrimination between the tested 17 standard serotypes (A-Q) could be detected, however, testing field isolates of serotype A originated from German turkeys wide variation was observed. On the other hand, serotype B isolates are identical. Comparing isolates from different countries high similarity within the isolates.
Table 1: Differential characteristic of some bacteria involved in respiratory disease in poultry

<table>
<thead>
<tr>
<th>Test</th>
<th>ORT (Pm)</th>
<th>Pasteurella (Ra)</th>
<th>Pasteurella gallinarum (Pg)</th>
<th>Pasteurella haemolytica (Ph)</th>
<th>Pasteurella pseudotubercolosis (Pp)</th>
<th>Ba (B)</th>
<th>Hp (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolysis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MacConkey agar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>β-galactosidase (PNPG)</td>
<td>+</td>
<td>+/-</td>
<td>+/-</td>
<td>+/ -</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Indole</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urea</td>
<td>+/-</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arginine dihydrolase</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+/ -</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Acid from carbohydrate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Lactose</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Maltose</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Galactose</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>- Fructose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

ORT = Ornithobacterium rhinotracheale; Pm = Pasteurella multocida; Ra = Riemerella anatipestifer; Pg = Pasteurella gallinarum; Ph = Pasteurella haemolytica; Pp = Pasteurella pseudotubercolosis; Ba = Bordetella avium; Hp = Haemophilus paragallinarum

of the same serotype, despite the origin of the isolate (chicken/turkey), was observed. The primarily result suggests the existence of relationships between the geographic origin, the serotype and the DNA fingerprint pattern (Popp and Hafez, 2001).

Serological examinations: Serological examination for detection of antibodies can be carried out using slide agglutination test prepared from different serotypes (Bock et al., 1997; Back et al., 1998a; Erganis et al., 2002), ELISA-tests (Hafez and Sting, 1996; Van Empel, 1994) or DOT-Immunobinding assay (Erganis et al., 2002).

The serotype specificity of the ELISA depends on the method of antigen extraction used for coating the ELISA plates. Boiled extract antigens are serotype-specific (van Empel et al., 1997), while Antigen extraction with sodium dodecyl sulphate (SDS-antigen) result in more cross-reactions (Hafez and Sting, 1999). Self made ELISA (SDS-extraction) as well as two commercial available ELISA-kits (Biocheck and IDEXX) are able to detect antibodies against all tested ORT serotypes. In addition, examination of serum samples collected from commercial flocks in all three systems showed similar results in flock bases using these ELISA-testes, however some minor variations on sample bases (Ballagi et al., 2000; Hafez et al., 2000). Generally, using ELISA, antibodies against ORT can be detected in serum and egg yolk shortly after infection and titres will peak between 1 to 4 weeks post infection (van Empel et al., 1996). Because titres decline rapidly after peaking, serum samples for flock screening should be taken frequently.

The advantage of the serological tests over bacteriological examination is that antibodies persist for several weeks after infection and the bacterial shedding is short. However, ORT excretion and antibody response may also be affected by a number of factors such as antibiotic therapy and vaccination. The influence of antibiotic therapy on the serological response to ORT remains unclear. Popp and Hafez (2002) carried out investigation in aim to determine the effect of drug therapy using amoxicillin on the antibody kinetics after experimental infection. Amoxicillin was confirmed to be very effective against most isolates tested in vitro (Hafez et al., 1993). Three groups of SPF layers each of 10 birds were experimentally infected with an ORT strain at 36 weeks of age intravenously. Each bird received 5x10^5 cfu. Group 1 was kept as infected non-treated control. Group 2 was infected and treated immediately with amoxicillin at dose level of 250 ppm via drinking water for 5 days. Group 3 was infected as mentioned above and received amoxicillin for 5 days started at 7th day post infection. An additional group (Group 4) was kept as non-infected non-treated control. Blood samples were collected at 5 day intervals till 50th day post infection and tested for antibodies against ORT using ELISA. The results showed that immediately treatment did not influence the antibody response. While the treatment started at 7th day post infection resulted in lower antibody response compared to infected control.

Differential diagnosis: In avian host several microorganisms of the genus Pasteurella include P. multocida, P. gallinarum, P. haemolytica and P. anatipestifer as well as pseudotuberculosis (Yersinia pseudotuberculosis, which previously was included in genus Pasteurella) are involved in respiratory diseases complex. Except P. multocida and P. anatipestifer, other bacteria are of less economic important in avian species. Further bacterial agents such as Bordetella avium and Haemophilus paragallinarum were frequently
isolated from respiratory outbreaks in poultry. As clinical sings, post mortem lesions are similar to other bacterial and virus infections differential diagnosis and isolation and identification of the causative agent are essential (Table 1).

References

Hafez: Diagnosis of Ornithobacterium rhinotracheale

