Biochemical Parameters in Broiler Chickens Vaccinated Against ND, IB and IBD

A. Talebi
Poultry Diseases Division, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, P.O. Box: 57153-1177, Iran

Abstract: Poultry diseases affect serum values of some biochemical parameters in chickens and a high degree of correlation between serum concentration of these parameters and humoral immunity against some poultry diseases has been reported. During this investigation, effects of vaccination against Newcastle disease, infectious bronchitis and infectious bursal disease on some selected biochemical parameters including albumin, calcium, chloride, cholesterol, glucose, magnesium, phosphorus, protein and triglycerides were studied. The results indicate that differences in values of the biochemical parameters within chickens of various ages were significant (P<0.05), while between chickens of each group at specific age were not significant. Comparison values of the biochemical parameters between groups revealed that only values of triglyceride, total protein and albumin of vaccinated chickens were significantly (P<0.05) differed from those values of corresponding biochemical parameters of control chickens. In conclusion, serum concentrations of biochemical parameters are age-dependent and some of them differ by vaccination.

Key words: Arbor-Acres, broiler, serum biochemistry, IB, ND, IBD

Introduction
Blood analyses have been performed much less often in avian medicine in comparison to its routine use in large animal practices in veterinary medicine. Serum biochemical parameters may provide valuable information for differential diagnosis of nutritional disorders (Quintavalla et al., 2001), anti-toxic effects of probiotic (Aqawane and Lonkar, 2004) and evaluation of health status of birds (Kral and Suchy, 2000). Biochemical values of chicken's serum may be influenced by several factors including poultry diseases (Panigrahy et al., 1986; Koinarski et al., 2001; Burnham et al., 2003; Kumar et al., 2003), Feed additives (Oguz et al., 2000; Cetin et al., 2002), some dietary nutrients (Odunsi et al., 1999; Eroksuz et al., 2001; Al-Homaidan et al., 2002; Kurtoglu et al., 2005), some drugs (Zaman et al., 1995), housing systems (Gunes et al., 2002), environmental temperature (Vecerek et al., 2002), and water restrictions (Ihekwumere and Herbert, 2003). Nutritional status of a host and in particular, highly bioavailable forms of zinc (Kidd et al., 1996) affect immune functions. Supplementation of zinc together with manganese amino acid complexes in broiler diets increase humoral immunity against Newcastle disease (ND), infectious bronchitis (IB) and infectious bursal disease (IBD) (Khajarem et al., 2002). A high correlation between antibody titers of Newcastle disease and serum concentration of calcium has also been reported (Bozickovic et al., 2000). The aim of this study was to compare values of some selected serum biochemical parameters in control and vaccinated broiler chickens against ND, IB and IBD.

Materials and Methods

Chickens: Forty day-old chicks of Arbor-Acres broiler strain were divided into two groups (C and V) with 20 chicks in each. The chicks were housed in cages, kept in separate rooms with recommended ambient temperature and other environmental conditions, and fed ad libitum with diets fully met the requirements laid down in the technical instructions for this strain.

Vaccination of chicks in group V: The chicks of group V were vaccinated with live vaccines (IBV H120, IBD D78, and ND B1 vaccines) routinely used for prevention of broilers against three major viral poultry diseases (infectious bronchitis, infectious bursal disease, and Newcastle disease, respectively). Eye-drop route of vaccination was used in this study. Vaccination program was designed as day 0 with H120, day 9 with B1, day 14 with D78, day 18 with H120, day 21 with B1, and day 25 with D78 vaccines according to recommendation of local Veterinary Bureau.

Blood sampling: On day 0, half of the chicks of each group (C and V) were bled as previously described (Olorode and Longe, 1999) in order to prepare blood samples of day 0 for chicks of group C (control) and V (eye-drop vaccinated). On day 7, blood samples were collected from jugular veins using 1 ml insulin syringes with 25 gauge needles, on day 14 and at weekly intervals until 56 days old; blood samples were collected from brachial vein as described (Zander, 1997; Alcorn, 2002). Blood samples were labeled according to leg-number of chickens and day of bleeding. In order to minimize biochemical parameters changes, sera were immediately separated and centrifuged 2300g for 5 minutes as recommended (Hrubec et al., 2004).
Talebi Effects on vaccination of chicks during the hatch period (Means(SE)

<table>
<thead>
<tr>
<th>Age (day)</th>
<th>Group</th>
<th>Calcium (mg/dl)</th>
<th>Chloride (mg/dl)</th>
<th>Cholesterol (mg/dl)</th>
<th>Glucose (mg/dl)</th>
<th>Magnesium (mg/dl)</th>
<th>Phosphorus (mg/dl)</th>
<th>Triglycerides (mg/dl)</th>
<th>Total Protein (mg/dl)</th>
<th>Albumin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C</td>
<td>4.64±0.30</td>
<td>198±9.5</td>
<td>352±42.7</td>
<td>267±8.6</td>
<td>1.66±0.05</td>
<td>3.54±0.22</td>
<td>71.9±5.32</td>
<td>2.42±0.12</td>
<td>0.69±0.04</td>
</tr>
<tr>
<td>V</td>
<td>4.46±0.35</td>
<td>198±1.5</td>
<td>352±42.5</td>
<td>267±8.7</td>
<td>1.66±0.05</td>
<td>3.54±0.22</td>
<td>71.9±5.32</td>
<td>2.42±0.12</td>
<td>0.69±0.04</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>8.2±1.05</td>
<td>102±8.2</td>
<td>103±8.53</td>
<td>352±52.45</td>
<td>2.03±0.20</td>
<td>6.3±0.16</td>
<td>133±6.94</td>
<td>2.26±0.27</td>
<td>1.74±0.06</td>
</tr>
<tr>
<td>V</td>
<td>8.2±1.05</td>
<td>102±8.2</td>
<td>103±8.53</td>
<td>352±52.45</td>
<td>2.03±0.20</td>
<td>6.3±0.16</td>
<td>133±6.94</td>
<td>2.26±0.27</td>
<td>1.74±0.06</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>9.2±0.37</td>
<td>100±9.0</td>
<td>143±7.2</td>
<td>371±3.8</td>
<td>2.45±0.08</td>
<td>7.07±0.15</td>
<td>137±6.43</td>
<td>2.37±0.10</td>
<td>1.71±0.12</td>
</tr>
<tr>
<td>V</td>
<td>9.2±0.37</td>
<td>100±9.0</td>
<td>143±7.2</td>
<td>371±3.8</td>
<td>2.45±0.08</td>
<td>7.07±0.15</td>
<td>137±6.43</td>
<td>2.37±0.10</td>
<td>1.71±0.12</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>9.7±0.36</td>
<td>102±2.4</td>
<td>127±4.8</td>
<td>293±3.6</td>
<td>1.70±0.05</td>
<td>5.03±0.15</td>
<td>86.9±5.2</td>
<td>2.42±0.15</td>
<td>1.50±0.1</td>
</tr>
<tr>
<td>V</td>
<td>9.7±0.36</td>
<td>102±2.4</td>
<td>127±4.8</td>
<td>293±3.6</td>
<td>1.70±0.05</td>
<td>5.03±0.15</td>
<td>86.9±5.2</td>
<td>2.42±0.15</td>
<td>1.50±0.1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>C</td>
<td>8.6±0.42</td>
<td>101±6.0</td>
<td>126±4.7</td>
<td>311±17.1</td>
<td>1.78±0.09</td>
<td>5.15±0.22</td>
<td>130±6.8</td>
<td>2.31±0.17</td>
<td>1.20±0.06</td>
</tr>
<tr>
<td>V</td>
<td>8.6±0.42</td>
<td>101±6.0</td>
<td>126±4.7</td>
<td>311±17.1</td>
<td>1.78±0.09</td>
<td>5.15±0.22</td>
<td>130±6.8</td>
<td>2.31±0.17</td>
<td>1.20±0.06</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>C</td>
<td>8.2±0.38</td>
<td>103±2.7</td>
<td>134±6.5</td>
<td>258±5.3</td>
<td>1.94±0.18</td>
<td>6.8±0.29</td>
<td>60.2±3.2</td>
<td>2.70±0.13</td>
<td>1.65±0.06</td>
</tr>
<tr>
<td>V</td>
<td>8.2±0.38</td>
<td>103±2.7</td>
<td>134±6.5</td>
<td>258±5.3</td>
<td>1.94±0.18</td>
<td>6.8±0.29</td>
<td>60.2±3.2</td>
<td>2.70±0.13</td>
<td>1.65±0.06</td>
<td></td>
</tr>
</tbody>
</table>

Biochemical parameters values determination: Serum biochemical parameters values were determined by using an auto-analyzer spectrophotometer (Technicon RA 1000™, Hertzell, LA, USA) and different kits in various wavelengths as follows:

- **Albumin**: Serum albumin concentration was determined as mg/dl by using Pars-Azmun kits with the bromocresol green method at 546 nm wavelength.
- **Calcium**: Serum calcium concentration was determined as mg/dl by using Pars-Azmun kits with cresol phthaline method at 500-590 nm wavelengths.
- **Chloride**: Serum chloride concentration was determined as mg/dl by using Pars-Azmun kits with chromium method at 500-550 nm wavelengths.
- **Cholesterol**: Serum cholesterol concentration was determined as mg/dl by using Pars-Azmun kits with chod-phap method at 546 nm wavelength.
- **Glucose**: Serum glucose concentration was determined as mg/dl by using Pars-Azmun kits with god-pap method at 500-546 nm wavelengths.
- **Magnesium**: Serum magnesium concentration was determined as mg/dl by using Pars-Azmun kits with xylidyn-blue test at 500 nm wavelength.
- **Phosphorus**: Serum phosphorus concentration was determined as mg/dl by using Pars-Azmun kits with UV method at 340 nm wavelength.
- **Triglyceride**: Serum triglyceride concentration was determined as mg/dl by using Pars-Azmun kits with ggp-pap enzymatic method at 546 nm wavelength.

Total Protein: Serum total protein concentration was determined as mg/dl by using Pars-Azmun kits with Biuret method at 540-546 nm wavelengths.

Statistical analysis: Repeated measure ANOVA and Dunfrony tests from SPSS 11 were used for statistical analysis of the results. Relationship between age and values of biochemical parameters as well as age and titers of immune responses were ascertained by means of Pearson’s correlation coefficient test.

Results: The results of this study, as shown in Table 1, revealed that physiological values of all the biochemical parameters in one-day-old chicks of both groups (values derived from yolk) were differing from those of hatch period. Values for cholesterol on day 0 in both groups were nearly three times of those in hatch period, while values of other biochemical parameters were much lower than those in during hatch period (Table 1).

Comparison of values of triglyceride, total protein and albumin for vaccinated group with values of corresponding parameters for control chickens were significantly (P<0.005) different, while the differences between values of the rest biochemical parameters were not significant. Levels of anti-body titers for control and vaccinated chickens were shown in Fig. 1-3 indicating that after reduction of maternal antibodies for ND, IB and IBD, antibodies against these diseases were not detectable in chickens of control group, whereas vaccinated chickens show high titers of antibody titers in different levels based on the vaccination program.

Discussion: In avian medicine, interpretation and sensible utilization of blood profiles are often limited by lack of values for...
physiological parameters relevant to the individual avian species and in each species to breeding lines, production types, and etc (Kral and Suchy, 2000). Comparison of reported values for biochemical parameters among different species of bird including ostrich (Mushi et al., 1998), captive birds (Polo et al., 1998), Sea-birds (Work, 1996), and broiler strains (Qaisar et al., 1996), indicates that biochemical parameters values of birds are species-dependent and significant differences between plasma and serum values have also been reported (Hrubec et al., 2004).

The results of this study revealed that values of the biochemical parameters studied were not differed significantly within chickens of same-age during 8 weeks husbandry period, but the differences in values of those biochemical parameters were significant (P<0.05) among chickens of different age in both vaccinated and control groups. The significant differences among serum concentrations most of the biochemical parameters at various age of husbandry period observed in this study is in agreement with previous reports that values of some biochemical parameters are age-dependent (Selvaraj et al., 1998; Krasnodebska-Depta and Andrej, 2000).

Comparison of biochemical parameters values observed in this study for Arbor-Acres as a genetically-improved strain of broiler chickens with those of previously reported for indigenous fowls (Naziey-Habibabadi, 1997; Simaraks et al., 2004) revealed that there are big differences on serum concentrations of the biochemical parameters. As some of the biochemical parameters affect the outcome of immune responses against some poultry diseases, therefore our data may provide some useful information in regards to selection of genetically-improved-resistance strains for poultry industry. For example, serum calcium concentration affects immune responses and antibody titers of Newcastle disease are dependent on serum calcium concentration (Bozickovic et al., 2000). Comparison of serum calcium concentrations of various strains of chickens indicate that serum calcium concentration is significantly higher in Hubbard than in Lohman, and Arbor-Acres strains (Qaisar et al., 1996) and serum calcium concentration observed in this study for Arbor-Acres strain (7.95±0.55) was less than of those reported for indigenous (10.3±0.8 for male and 10.1±1.5 for female) chickens (Simaraks et al., 2004) and single-comb white leghorn (10.03±0.43) chickens (Hrubec et al., 2004).

Conclusion: The results of this experiment indicate that the serum concentrations of biochemical parameters are age-dependent and some serum biochemistry values of vaccinated broiler chickens differ significantly from those of unvaccinated chickens.
References

