Research Article

Association of ApoVLDLII Gene Polymorphism with Body Composition Traits in Kampung Chicken

A. Furqon, A. Gunawan, N. Ulupi, T. Suryati and C. Sumantri

Postgraduate School of Bogor Agricultural University, 16680 Bogor, Indonesia
Department of Animal Production and Technology, Faculty of Science, Bogor Agricultural University, 16680 Bogor, Indonesia
Research Center for Bioresources and Biotechnology, Bogor Agricultural University, 16680 Bogor, Indonesia

Abstract

Background and Objective: Very low density lipoproteins (VLDLs) is a major class of lipoprotein particles that is synthesized and secreted by the liver. Selection for economic traits based on molecular marker assisted selection are required to increase production performance. The present study was designed to analyze associations of very low density Apo lipoprotein II (ApoVLDLII) gene polymorphisms with body composition traits. Kampung chicken, a native chicken in Indonesia, is slow-growing chicken. Materials and Methods: A total of 76 male Kampung chickens were used in the current study. Body compositions were measured in 12 and 26 weeks of age. Primers for intron 1 region were designed from genomic chicken sequence. A G634A SNP of the ApoVLDLII gene intron 1 region was detected and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was then used for genotyping of Kampung chicken population. Results: The ApoVLDLII polymorphism was significantly associated with body, carcass, breast, thigh, back and thigh muscle weight in 26 weeks old Kampung chicken population (p<0.05). In 12 weeks old Kampung chicken, ApoVLDLII polymorphism was not significantly associated with body composition traits. Conclusion: It is concluded that the ApoVLDLII gene could be a candidate gene that affects growth and body composition traits in chicken.

Key words: Kampung chicken, body composition, ApoVLDLII gene, polymorphism

Received: July 04, 2017
Accepted: September 21, 2017
Published: October 15, 2017

Corresponding Author: C. Sumantri, Department of Animal Production and Technology, Faculty of Science, Bogor Agricultural University, 16680 Bogor, Indonesia

Copyright: © 2017 Furqon et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.
INTRODUCTION

Kampung chicken is a native chicken in Indonesia. Kampung chickens spread out in all regions in Indonesia. Most of Kampung chickens are frequently bred with traditional management. Kampung chickens have an important role in supplying of egg and meat. Commonly, Kampung chickens are slow growing and lean meat type chickens1. The meat and eggs taste of Kampung chickens are appreciated by public and the production cost is relatively cheaper than another chicken. In addition, Kampung chickens have a good adaptation to the tropical climate in Indonesia2.

Identifying candidate genes related to economic traits will provide an opportunity for genetic improvement in breeding programs. Recent studies in molecular genetics and genomic technologies have led to the discovery of genes associated with growth and meat quality traits3. A polymorphic locus associated with growth and body composition traits of animals can be used as genetic markers. These markers can be used as a criterion of selection for genetic improvement4.

Very low density lipoproteins (VLDLs) and high density lipoproteins (HDLs) are the 2 major classes of lipoprotein particles that are synthesized and secreted by the liver5. The regulation of the assembly and secretion of VLDL comprises a complexity appropriate for the creation of a large, the multimolecular transport vehicle that help to maintain nutrient homeostasis in the liver6. The proportion of low density lipoprotein (LDL) and very low density lipoprotein (VLDL) particles in meat type cockerel chickens is smaller than high density lipoprotein (HDL), with LDL exceeding that of VLDL7. Very low density apolipoprotein (ApoVLDLII) is a major component of VLDL fraction of hen serum. This protein binds lipoprotein and forms an outer polar shell surrounding the water-insoluble lipid core8. Association of polymorphisms in avian ApoVLDLII with growth, body composition and meat quality had been reported9,11.

The objectives of the current study were to identify an SNP in ApoVLDLII gene intron 1 using PCR-RFLP and evaluate associations between ApoVLDLII SNP and body composition traits on different ages of Kampung chickens.

MATERIALS AND METHODS

Experimental populations and management: Kampung chicken, a native chicken in Indonesia, is slow-growing chicken. A total of 48 males at 26 weeks of age and 28 males at 12 weeks of age were used in the current study. All chickens had access to feed and water ad libitum. From hatch to 8 weeks of age, Kampung chickens received a starter feed (4,080 kcal of gross energy kg−1 and 19.03% of crude protein) and from 9-24 weeks of age, Kampung chickens were fed a grower diet (4,001 kcal of gross energy kg−1 and 17.42% of crude protein).

Phenotypic measurements: Body weight and body composition traits were recorded at 12 and 26 weeks of age. These measurements included body weight (BW), carcass weight (CW), breast weight (BrW), breast muscle weight (BrMW), thigh weight (ThW), drumstick weight (DrW), back weight (BcW), wings weight (WW), thigh muscle weight (ThMW) and drumstick muscle weight (DrMW).

DNA isolation and PCR amplification: Blood samples were collected from Vena axillaris. Genomic DNA were isolated according to Sambrook \textit{et al.}12.

The PCR primers of ApoVLDLII gene intron 1 used in this study were based on previous study conducted by Li \textit{et al.}9. This primers (5’ CCT CTA TGA CAT GGT TGC CT 3’ and 5’ ATG GGT TTG ACC CTG CTA TG 3’) were designed to amplify a 492 bp fragment by oligo 5 according to the chicken genomic sequence in the GenBank database (accession number V00448). The PCR reaction conditions were 94°C for 5 min, 35 cycles of 94°C for 10 sec, 60°C for 20 sec, 72°C for 30 sec and an extension at 72°C for 5 min. The 25 μL reaction volume included 50 ng of DNA template, 1× reaction buffer, 5 pmol of each primer, 0.16 mM of deoxyribonucleotide triphosphate, 1.5 mM of MgCl\textsubscript{2} and 1 U of Taq polymerase.

Screening of the population for restriction enzyme-detectable SNP: A single nucleotide polymorphism (SNP) of the ApoVLDLII gene was detected by digesting 7 μL of the 492 bp PCR product with 3 U of the \textit{SfdI} enzyme (Thermo Fisher Scientific Inc.) at 37°C overnight. The restriction digests were electrophoresed for 45 min at 100 V on a 2.0% agarose gel with ethidium bromide. Individual PCR-RFLP fragment sizes for the gene were determined by visualizing the band pattern under UV Transilluminator (Alphalagera EP).

Statistical analysis: The association between the polymorphism and body composition traits were analyzed using the GLM procedure (SAS Inst. Inc., Cary, NC). The model was fitted with the genotype (G, 2 levels) as fixed effects, as follows:

\[Y = \mu + G + e \]
where, Y is the dependent variable for trait measured in the population, µ is the overall population mean for traits, G is the fixed effects and e is the random error. Significant differences between means of the different genotypes were calculated using the t-test. Significance was determined as p<0.05, unless otherwise specified.

RESULTS AND DISCUSSION

In this study, one pair of specific primers was used to amplified 492 bp of DNA fragment of ApoVLDLII intron 1. There was a G/A SNP at base 634 (accession number V00448). The PCR-RFLP method was used successfully for genotyping the SNP in intron 1 of the chicken ApoVLDLII gene. Two genotypes were detected and defined as GG and AG (Fig. 1). The 492 bp fragment was digested with SfcI restriction enzyme. The digested PCR products had fragment sizes of 396 and 96 bp for the GG genotype and a combination of 492, 396 and 96 bp for AG genotype.

According to previous study\(^5\), the ApoVLDLII could be used as a criterion of selection in poultry breeding program to increase growth and body composition traits. Recent advances in molecular genetics and genomic technologies have led to the discovery of genetic markers associated with growth and body composition traits\(^{13,14}\).

The ApoVLDLII is a small phospholipid binding protein synthesized in the liver\(^5\). This protein is also detectable in plasma and liver of normal young cockerels\(^{16}\). This protein contains 82 amino acid residues with a single cysteine at residue number 75\(^7\). The particle size of ApoVLDLII is 46.8±8.6 nm\(^8\). The ApoVLDLII gene is comprised of four exons and three introns which span 2.9 kilobases of DNA\(^9\).

The genotype and allele frequencies were calculated in two groups of Kampung chicken (Table 1). Genotype AA was not found and there were only two genotypes (AG and GG) found in these population. The G allele was more frequent than A allele in two groups of kampung chicken. This was similar to the results of Seyedabadi et al.\(^{20}\), in Iranian commercial broiler lines.

The association of ApoVLDLII gene polymorphism and body composition in 12 and 26 weeks old kampung chicken is summarized on the Table 2 and 3, respectively. The ApoVLDLII polymorphism was generally significantly associated with body composition in 26 weeks old chicken. There were significant association exist between the ApoVLDLII polymorphism and BW, CW, BrW, ThW, BcW and ThMW in 26 weeks old chicken. No significant difference was observed in DrW, WW, BrMW and DrMW. The heterozygous (AG) were significantly higher than the homozygous (GG) in BW, CW, BrW, ThW, BcW and ThMW.

Table 1: Genotype and allele frequencies of ApoVLDLII intron 1 in two groups of Kampung chicken

<table>
<thead>
<tr>
<th>Population</th>
<th>Number</th>
<th>Genotype frequency</th>
<th>Allele frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AA</td>
<td>AG</td>
</tr>
<tr>
<td>12 weeks old chicken</td>
<td>28</td>
<td>0.000</td>
<td>0.250</td>
</tr>
<tr>
<td>26 weeks old chicken</td>
<td>48</td>
<td>0.000</td>
<td>0.208</td>
</tr>
</tbody>
</table>

Fig. 1: PCR-RFLP pattern for ApoVLDLII gene intron 1 region with SfcI restriction enzyme

M = 100 bp markers, 1-5,7,8,10,11 = GG genotype, 6, 8 = AG genotype
Table 2: Effect of the ApoVLDLII genotype on body composition traits in 12 weeks old male Kampung chicken

<table>
<thead>
<tr>
<th>Genotype</th>
<th>BW 1</th>
<th>CW 2</th>
<th>BrW 3</th>
<th>ThW 4</th>
<th>DrW 5</th>
<th>WW 6</th>
<th>BcW 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG (21)</td>
<td>769.43±23.05</td>
<td>443.76±20.15</td>
<td>113.67±5.44</td>
<td>82.57±3.47</td>
<td>80.19±3.39</td>
<td>72.43±2.65</td>
<td>111.95±4.9</td>
</tr>
<tr>
<td>AG (7)</td>
<td>771.57±44.20</td>
<td>448.29±27.81</td>
<td>111.29±7.28</td>
<td>85.29±6.19</td>
<td>82.14±5.36</td>
<td>75.14±2.41</td>
<td>111.29±9.36</td>
</tr>
</tbody>
</table>

1Means within a row with no common superscript are different (p<0.05).

3Numbers shown in parentheses are the number of individuals with the specified genotype.

4All of traits are in grams, Values are expressed as Mean±SE

Table 3: Effect of the ApoVLDLII genotype on body composition traits in 26 weeks old male Kampung chicken

<table>
<thead>
<tr>
<th>Genotype</th>
<th>BW 1</th>
<th>CW 2</th>
<th>BrW 3</th>
<th>ThW 4</th>
<th>DrW 5</th>
<th>WW 6</th>
<th>BcW 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG (38)</td>
<td>1566.20±13.16</td>
<td>988.76±12.34</td>
<td>251.61±3.41</td>
<td>192.66±3.32</td>
<td>181.08±2.57</td>
<td>128.76±1.63</td>
<td>242.89±5.85</td>
</tr>
<tr>
<td>AG (10)</td>
<td>1662.25±50.96</td>
<td>1076.10±44.61</td>
<td>273.20±10.91</td>
<td>212.10±11.59</td>
<td>194.50±6.90</td>
<td>131.10±4.12</td>
<td>269.90±10.50</td>
</tr>
</tbody>
</table>

1Means within a row with no common superscript are different (p<0.05).

3Numbers shown in parentheses are the number of individuals with the specified genotype.

4All of traits are in grams, Values are expressed as Mean±SE

No significant association was found between the ApoVLDLII gene polymorphism and body compositions in 12 weeks old chicken. The possible reason may be due to the fact that this gene is not expressed in 12 weeks old chicken. According to the expression study of chicken gene21, ApoVLDLII was not expressed in chicken adipose tissue at 7 weeks old chicken. In the study, although this gene was not detected in chicken adipose, it may regulate lipid metabolism indirectly. In addition, ApoVLDLII gene expression was also investigated in chicken hepatocytes22.

The association of ApoVLDLII gene polymorphism in intron 1 with growth and body composition traits in Iranian commercial broiler lines was investigated by Seyedabadi et al.20. The polymorphism of ApoVLDLII gene intron 1 was significantly associated with body weight at 6 weeks, carcass weight, breast muscle weight, drumstick and wing weight. The effect of breed, ApoVLDLII gene polymorphism and metabolic biochemical markers on growth and body composition traits in four breeds of commercial broiler was reported by Ghanem et al.4. The restriction enzyme BfiI was used to digest PCR products. The SNP was significantly associated with weight, gain, feed intake, feed efficiency, dressing percentage and gibliets weight. Both of their results showed that the heterozygous were significantly higher than the homozygous. This was similar to the result in this study.

In another study, Musa et al.23 reported the significant relationship of ApoVLDLII gene polymorphism intron 1 and triglyceride and VLDL concentration using single strand conformation polymorphism (SSCP) in Rugao and Anka chickens. Additionally, another SNP in exon 4 of ApoVLDLII gene was associated with meat tenderness in Anka and Rugao chickens11.

CONCLUSION

The ApoVLDLII gene polymorphism in two populations of Kampung chicken were polymorphic. The genotype AA was not found in two different ages of Kampung chicken. The ApoVLDLII gene polymorphism intron 1 was significantly associated with body composition traits in 26 weeks old Kampung chicken. The SNP can be used as a potential marker to enhance the genetic improvement for breeding program of Kampung chicken.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the member of Animal Breeding and Genetic Community of Animal Production and Technology in Bogor Agricultural University. This research was supported by Ministry of Research and Technology No. 25/SEK/INSINAS/PPK//I/2014 (InSiNAS Project 2014) and Ministry of Education and Culture No. 081/SP2H/PL/DirLitabmas/VI/2014 (PMDSU Project 2014).

REFERENCES