Information Technology Journal, 2012
ISSN 1812-5638 / DOL: 10.3923/1t).2012.
© 2012 Asian Network for Scientific Information

Parallel Computing System for Image Intelligent Processing

Zongtao Duan, Tao Lei and Haiwei Fan
Information Engineering School, Chang'an University, Xi’an, 710064, China

Abstract: In this paper, a parallel computing system for image intelligent processing 1s described. This parallel
computing system includes two maimn parts: A parallel computer and a set of software tools. The parallel
computer 1s constructed by a host processor, a SIMD coprocessor, a stream memory and a controller of this
memory. Furthermore, the parallel computer can be extended by different kinds of organization with the host
processors and the SIMD coprocessors. Programmers write image intelligent processing programs in a C-like
language and a set of software tools maps these programs to code that runs on the parallel computer. These
two parts work together to provide a high performance for image intelligent processing.

Key words: Parallel computing, image intelligent processing, data parallel and stream

INTRODUCTION

In this paper, we describe a parallel computing system
for image intelligent processing applications development
and show how high performance image intelligent
processing applications are realized on this system. This
system includes a parallel computer and a set of software
tools.

The parallel computer 18 mainly constructed by a host
processor, a SIMD coprocessor, a stream memory and a
controller of this memory (Shen, 1999). Figure 1 shows the
organization of the computer. The host processor 1s the
main controller of the whole system. The stream memory
15 the memory between main memory and the
coprocessor’s local register file. Its function is to enhance
memory system’s speed to match the coprocessor’s
requirement (Serebrin ef al., 2002).

Image intelligent processing applications are
programmed using a C-like language. This C-like language
includes traditional serial statements and data parallel
statements. We call the serial statements part as stream
programs, the data parallel statements part as kernel
programs. The stream programs tun on the host
processor. The kemel programs run on the SIMD
coprocessor. Image data and lkernel programs are
transferred from mam memory to stream memory. Fmally,
umage data arrive at coprocessor’s local register file and
the kernel programs arrive at coprocessor’s program
memory. The whole transformation is controlled by the
stream memory controller. In the following we will give
more details about these.

APPLICATIONS

We want to implement image intelligent processing
on this system. Tasks in this kind of image processing can
be divided to three levels. They are low level tasks, middle
level tasks and high level tasks.

Low level tasks in image processing are also called
preprocessing which is used to organize data for later
image processing. Preprocessing mamly includes image
enhancement and image recovery. In the opiuon of
computing, preprocessing can be viewed as three kinds of
processes that have single pixel depended processing
(such as threshold, quantification and coding etc.) part
pixels processing (such as filtering, convolution etc.) area
pixels processing and whole pixels processing
(digital transformation such as FFT). All of the above
processing has conunon characteristics as followings: The
first 15 space inflexibility that 1s to say the same
instruction can be executed on the whole of the image
pixels. We call this characteristic data independence. The
second 1s locality 1.e., for each pixel its processing result
only depends on its neighboring pixels. The third is the
fixed data structure i.e., the image processing result is still
an image array. From all the above we conclude that the
image preprocessing has obvious data parallel.

The aim of middle level processing 1s to find out the
outstanding features and the proper primitive elements
from the images. The middle level processing includes
image partition and description of image partition. The
middle level processing correspeonds to a transformation
from image to feature. So, middle level processing is
a mixture of data parallel and task parallel.

Corresponding Author: 7Zongtao Duan, Information Engineering School, Chang'an Umiversity, Nan Er Huan Zhong Duan,

Xi’an 710064, China

Inform. Technol. J., 2012

The aim of high level processing is to recognize the
content of image. This kind of processing can be divided
into two periods that are symbol description and scene
understanding. From these feature, we can conclude that
the high level processing has obvious task parallel.

When a parallel computer system can fit these typical
features in image processing, the performance of this
system needs to be greatly enhanced. This paper will
discuss this kind of image processing system and how to
promote its performance.

PARALLEL COMPUTER

The parallel computer includes a host processor, a
SIMD coprocessor, a stream memory and a controller of
this stream memory as Fig. 1 illustrated.

Parallel computer organization: The host processor 1s
the main controller of the whole system. We call the host
processor and the stream memory controller a serial
processor. The stream memory controller manages the
data transfer between the stream memory and the memory
on serial processor. The memory management’s function
15 to enhance memory system’s data transfer speed to
match the coprocessor’s computing requirement.

In Fig. 1, the host processor, the stream memory
controller, the stream memory and the SIMD coprocessor
are always on a same chip and always the stream memory
is constructed by register files.

Parallel computer architecture: The parallel computer is
a new generation image processing computer. As Fig. 2
illustrated this computer includes a key component which
is called SIMD coprocessor. Always we call the SIMD
coprocessor as PE (Processing Element) array. The host
of the parallel computer can be a PC or a workstation. The
PE array connects with host. The host processor manages
the whole computer. The host transfers kernel source
programs and data to the PE array’s program memory and
stream memory. Then the kemel programs are started on
the PE array. Finally, the computing results are fetched
from stream memory to the host for further analysis. The
host also does initialization, diagnosis and testing of the
PE array. PE array 1s suitable to do matrix computing, so
we can view the PE array as an accelerator which matches
matrix computing.

The PE array is constructed by many processing
elements in a regular array. The PE array includes N»IN
PEs. Each PE includes AT.U, local register file, buffer and
router which does data communication. All of the PEs are
connected by a conventional ring grid. The number of the
PEs 18 decided by the computing requirement and the
VLSI realization level.

Serial processer
Host processor = SIMD
Tk
Memory b
Controller A Stredm meenory

Fig. 1: Parallel computer organization

I Host I

| vOmterface |

}

Main controller
Program memory
! -- 3

| PE array

F 9y

Stream
memory

i

Parallel computer

Fig. 2: Parallel computer architecture

Because the PE array is regular and each PE is simple,
the PE amray clip can be realized i small size.
Furthermore, with many PE array chips we can get a
parallel computer.

The parallel computer provides a three levels memory
hierarchy. This three levels memory 1s the local register
files of PE’s, the stream memory and the main memory.
This hierarchy 15 used to exploit the parallelism and
locality of image applications.

The architecture of the parallel computer meets the
computation and bandwidth demands of image
applications by directly processing the naturally
occurring data streams within image applications. The PE
array 18 designed to be a coprocessor that operates on
image data streams. Many PHs can provide high
performance for real-time image processing.

The stream memory effectively isolates the ATLUs
from the main memory, making the PE array a load/store
architecture for data streams. All data stream operations
transfer data streams to or from the stream memory. For
instance, the PE array transfers data streams directly out
of and into the stream memory, 1solating PE array transfers
from main memory accesses and computation. This
simplifies the design of the processor. Meanwhile the
stream memory and the PE array can works in pipeline. So
data streams transfer speed 1s promoted by this stream
memory.

Parallel computer extension: The above parallel
computer 1s a basic image processing computer. The host
processor is a SISD computer. The coprocessor is a SIMD

Inform. Technol. J., 2012

computer which can be an 8 PEs chip or a 16 PEs chip. We
can construct 8 PE chips or 16 PE chip on a beard. In this
kind of organization we can construct a 64 PEs or 256 PEs
in one parallel computer. Furthermore, the 256 PEs on a
board (for example a PCI board) can also be constructed
in the number of 8, 16 or more to mount on a computer
main board In this kind of extension for the parallel
computer we can get a parallel computer which can match
the image processing application’s performance
requirements.

Meanwhile, in the application section we know that
image processing application has data parallelism and task
parallelism characteristics. In order to construct a parallel
computing system to match the need of different
parallelism for image processing, we can use the basic
image processing computers to construct an intelligent
parallel computer for mage mtelligent processing. For
example, use cable to comnect several basic parallel
computers together we can construct a real task parallel
computer which can match three kinds of parallelism for
image intelligent processing.

In a word, the extension of the parallel computer can
be realized in four types. The first way s to extend the
number of PEs on a chip. The second way is to extend the
number of PE chips on a board. The third way is to
extend the number of boards on a computer main
board. The fourth way is to extend the number of
computer main boards.

SOFTWARE

The basic image processing computer decomposes an
application into a series of kernel programs that operate
on image data. We call this kind of image data streams.
Streams are sets of sequential data records that lend
themselves to high-performance computation through
their regular and predictable structure. Tn simple words
stream 13 a data collection that could be operated in
parallel (Buck et al., 2004).

Stream programs are written in the SISD statement of
a C-like language. The kernel programs are written in the
SIMD statement of the C-like language. The use of these
two parts in the C-like language for image processing
allows the programmer to use the familiar high-level C
language’s structure (Duan, 2005). The two-level
programming system reflects the division of programs on
the basic mnage processing computer: The kemel
programs running on the SIMD coprocessor, while the
stream program running on the serial processor
corresponds to a high-level description of the image
processing.

There are several program parts work together to
execute an image application, as illustrated in Fig. 3.
Stream programs run on the serial processor, call the

Development platform
Image processing program
I
| SISD code | | SIMD code |
\ Compiler /
. | Ve
Run time
Hos’: [processor Datap ;
SISD code procetsing
SIMD code

\, Scheduler / |« P

Fig. 3: Software partitions

kernel programs and initiate the transfer of data streams.
Stream programs instruct the SIMD coprocessor to run
kernel programs and then send out the resulting data
(Duan, 2004).

Stream program and stream scheduler: Stream programs
are written in the C-like language with calls into kernel
programs. Kemmnel program calls are treated as functions
that take input and output streams as arguments. The
stream scheduler allocates space in serial processor’s
memory and mn stream memory used to store streams that
are passed between kernel programs. The scheduler
determines when to place streams in the stream memory
and when to move them to and from serial processor’s
memory to take advantage of producer-consumer locality
between different kernel programs. Efficient stream
programs minimize traffic between the stream memory and
the serial processor’s memory. When the image data is
larger than the stream memory, the scheduler breaks the
large stream mto smaller batches. One batch 1s loaded into
stream memory at a time. The kernel program executes on
this batch before computation begins on the next rows. In
this way, raw unage data arrives i the stream memory and
passes between kernel programs through temporary
storage in the stream memory. Expensive memory traffic is
encountered only when final results are written out.

To ensure high resource utilization, the stream
scheduler performs software pipelining at the stream level,
where kernel programs are executed concurrently with
memory operations.

Kernel program: Kemel programs are user specified
programs which are executed over the set of input streams
to produce elements onto the set of output streams.
Kemmnel programs operate implicitly over the entire set of
input streams. The kernel will execute once for each

Inform. Technol. J., 2012

element in the input stream (s). The run-time will
guarantee that all input streams are the same length. If a
kernel 15 called with input streams of differing lengths, the
kernel will immediately fault, producing no output. Kernel
programs are declared similar to standard C-functions. An
example kernel is shown below:

void kernel foo (float a <>, out float b <=, float p)
{

b =atp;

}

The parameter “a’ 1s the mput strearm, ‘b’ 1s the output
stream, ‘p’ is a constant parameter. The body of the kernel
foo will be executed for each input element of ‘a’ in
parallelism, producing a new stream ‘b’, which contains a
set floats which are p larger than the corresponding ‘a’
elements. The keyword kemel 1s a function descriptor
used to descript that this is a kernel function, not a normal
C function.

Kemel functions are called i the same method as
normal C function however the stream arguments should
be declared streams.

Programmers
different PE array chip, so we can get several kemnels in
parallel. This kind of parallelism can match task parallelism
of image intelligent processing.

can distribute several kernels on

Parallel pes communication function: The permute
operation 13 used to explicitly interchanges values
between PEs. The permute operation looks like permute
(PE-permutation, expression).

The permute operation takes a constant describing
the permutation and the value to be permuted as
arguments. The permutation 1s an integer m which the nth
nibble specifies the index of the PE from which the nth PE
gets the value of the permuted variable. For mstance,
“permute (0x65432107, x)”, rotates the value of x in each of
the PEs to the left by specifying that PE 7 gets the value
from PE 6 and so on.

System working process: Two different types of
programs are compiled and loaded on the basic image
processing parallel system. Both stream programs and the
stream scheduler are compiled for the serial processor
with the C-like language. On boot, the serial processor
reads a small boot program from boot RAM and executes
the full stream programs. Also, the compiler compiles
kernel programs for the SIMD coprocessor. The stream
scheduler loads compiled kernel programs mto the SIMD
coprocessor’s microcode store.

For the extension parallel computer, the programmer
needs to divide the application mto task parallelism in

advance. The application programmer divides image
processing application in task parallelism and data
parallelism in the view of image processing’s three level
processing. For the task parallelism programs,
communication can be realized in the function of MPI
tools.

CONCLUSION

The research on parallel computing system for the
image intelligent processing is popular. There are some
research parts for parallel computing system for image
intelligent processing being discussed in this article. The
system has two functions. First the system can be used as
an evaluation platform for parallel system of image
processing. Second the system can be used as a
development and debugging platform for image
processing applications. Through several kinds of image
applications’ analysis and evaluation we can get some
suggestions to improve the parallel computer’s
architecture which could help us get new parallel system
for image intelligent processing with higher speed and
higher performance.

FUTURE WORKS

In Fig. 1, we get a serial processor that 1s a SISD
processor. The coprocessor 1s a SIMD processor. When
we deploy the SISD processor and the SIMD coprocessor
on a board or a chip, we get a single computer system.
When several this kind of boards or chips orgamize
together, then setting another host processor as a
management node we can get a total MIMD processor
which supports data parallelism, task parallelism and
pipeline parallelism. Then the image processing will be
greatly promoted. Also we need new software technology
to support these kinds of parallelism.

There are many multi core processors. The parallel
computer 18 a kind of multi core processor. Many
researches about multt core processor’s software
components are doing now, such as runtime system,
programming language and compiler. These are still a
challenge in the parallel computing area.

ACKNOWLEDGMENTS

The authors thank the 863 plans projects of China
(2009AA1172203), Postdoctoral ~ Science Special
Foundation funded project (200902581), Specialized
Research Fund for the Doctoral Program of Higher
Education (200807101004), the Special Fund for Basic
Scientific Research of Central Colleges, Chang’an

Inform. Technol. J., 2012

University (CHD2009IC115) under these foundations the Serebrin, B., I.D. Owens, C.H. Chen, 5.P. Crago and

present worl was possible. U.J. Kapasi et al, 2002. A stream processor
development platform. Proceedings of the IEEE
REFERENCES International Conference on Computer Design,
September 16-18, 2002, Freiburg, Germany,
Buck, T, T. Foley, D. Horn, I. Sugerman, K. Fatahalian, pp: 303-305.

M. Houston and P. Hanrahan, 2004. Breok for GPUs: Shen, X B., 1999. MPP Architecture. In: MPP Embedded
Stream computing on graphics hardware. ACM Computer Design, Shen, X.B. (Ed.). Tsinghua

Trans. Graphics, 23 777-786. University Press, China, pp: 250-251.

Duan, Z.T., 2004 An embedded image processing
platform. J. Inform. Comput. Sci., 1: 41-46.

