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Abstract: In recent years the rapid deployment of applications like online banking, stock trading and corporate
remote access, have seen an explosive growth in the amount of sensitive data exchanged over the mternet.
Moreover, these internet hosts increasingly are battery-powered, wireless, handheld devices with strict memory,
CP1J, latency and bandwidth constraints. Given these trends, there is a clear need for efficient, scalable security
mechamsms and protocols that operate well in both wired and wireless environments. To date elliptic curve
cryptography 1s gaimng wide acceptance as an alternative to the conventional cryptosystems (DES, RSA,
AES, etc.) which tend to be power hungry. Elliptic curve ciphers require less computational power, memory and
communication bandwidth giving it a clear edge over the traditional crypto-algorithms. This study describes
the basic design principle of Elliptic Curve Crypto (ECC), EC disarete logarithm problem, ECDH key agreement

and encryption protocols.
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INTRODUCTION

The rapid growth of information technology that has
resulted in significant advances in cryptography to
protect the mtegrity and confidentiality of data 1s
astounding. The historical cryptosystem has been a
symmetric-key approach, in which both communicating
partners share a common key and a level of trust is
required to ensure that neither party divulges the key!"”.
Considered by some to be the only major abstract
advance in encryption techniques, Diffie and Hellman®™
proposed Public Key Encryption m 1976 and has remamed
a very popular protocel for strong authentication of
entities™. By this method each user of the network has a
personalized private key and a public key. The public key
is distributed to all members of the network, while only the
user holds the private key. This implies that the user is the
only person able to read any messages encrypted with his
public key. Tt is designed to be computationally
intractable to calculate a private-key from its associated
public-key. With public key cryptography,
sophisticated  cryptographic tools such as tokens
(e.g., smart cards), digital signatures and certificates are
used to provide the full scope of cryptographic
security services.

However, it 1s important to note that traditional
cryptographic algorithms like DES!, DLP®, RSAY etc. are
not particularly efficient in small form factor, low-power,

more

resource constrained devices, as they require memory
power hungry big integer computation
co-processor to complete the calculations in a timely

imntensive
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manner. Adding such a co-processor sigmficantly raises
the cost of manufacture, rendering many devices
impractical. The cost of producing a smart card, for
example, is increased by as much as 400% when an
additional processor is required”. For embedded systems
or telecommunications applications characterized by
extremely high volumes and a wide variety of devices,
many of which have limited computing resources and
wireless, the trend has been towards
cryptographic algorithms.

One technology in particular, known as Elliptic Curve
Cryptography (ECC), has become the cryptography of
choice for mobile computing and commumnications devices
due to its size and efficiency benefits. Koblitz” and
Miller” independently proposed the Elliptic Curve
Cryptosystem (ECC), a method of utilizing a Discrete
Logarithm problem over the pomts on an elliptic curve. By
their proposal, ECC could be used to provide both digital
signatures and an encryption scheme. Over the past
decade, ECC and later ECDLP (Elliptic Curve Discrete
Logarithm Problem) received considerable attention from
mathematicians around the world"”, but to-date no
significant breakthroughs have been made in determining
weaknesses in the algorithm and to-date has weathered
umpteen mathematical attacks!"""

alternate

I Elliptic curve systems
have thereby come to be accepted today as the most
viable publickey technology for high-security
applications.

The ECC provides higher strength-per-bit than any
other current public-key cryptosystems!'™. If you
compare elliptic curves to RSA and DLP you find many
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advantages: to obtain the same security e.g., the use of
smaller fields for elliptic curves. Therefore, elliptic curves
can be implemented easier and faster. Moreover, because
of its higher strength-per-bit, ECCs 1s being increasingly
used in practical applications (e.g. IC card and mobile
devices) instead of RSA, which is the most used
public-key cryptosystems today. They are also most
suitable for constrained enviromments such as those in
which smart cards and personal wireless devices are
typically deployved. Elliptic curve ciphers are today
commonly found in smart cards, personal digital
assistants (PDAs), pagers and mobile phones. The Elliptic
Curve Cryptosystems are also used for implementing
protocols such as ECDSA digital signature scheme!'*",
Diffie-Hellman key exchange scheme™, EC ElGamal
Encryption/Decryption scheme™ etc. In this study we
analyze the elliptic curve operations and design procedure
inveolving ECDLP, ECDH key exchange agreement and
EC encryption protocols.

ECC ARTTHMETIC OVER GALOIS FIELD

The core of the ECC 1s when it 1s used with Galois
Field it becomes a one way function 1.e., the math’s
needed to compute the inverse is not known. Let an
elliptic curve group over the Galois Field E (a, b) where,
p>3 and 18 prime, be the set of solutions or points
P = (x, y) such that (x, ye Ea,b)) that satisfy the equation:
v’ = xtax+b (mod p) for O<x<p together with the extra
point O called the point at infinity. For a given point
P =(x,¥,). x, and y, are called the x and y coordinates of
P, respectively. The number of pomts on Ejfa, b) is
denoted by # E(F,). The constants a and b are non
negative integers smaller than the prime number p and
must satisfy the condition: 4a™+27 b’ # O (mod p). For each
value of x, one needs to determine whether or not 1t 15 a
quadratic residue. If it is the case, then there are two
values in the elliptic group. If not, then the point is not in
the elliptic group E.(a, b). So there will be a lot of points
modulo p. In fact, the general theory says that there will
be about p points (x, y) with error bounded by O (/).

Construction of an elliptic curve over F: Let the prime
number p =23 and consider an elliptic curve E: y* = x+x+4
mod 23 defined over F,;, with the constants a = 1 and b=4,
which have been checked to satisfy that E is indeed an
elliptic curve. We then determine the quadratic
residues Q,, from the reduced set of residue
7 =1§1,2,3,....,21,22}  which is given by Q,, = {1, 2, 3, 4,
6,8,9,12,13,16, 18}. Which we use to determine the
values of E;i(1.4), 1e.:

0,2) (0,21 (111 (1.12)
7200 8.8 815 ©.11)
111, 9) (11, 14)(13, 11) (13, 12)

(15,17) (17, 9) (17, 14) (18, 9)

Ex(1, 4)

4,7) (4,16) (7.3)

(9,12) (10,5) (10, 18)
(14, 5) (14, 18) (15, 6)
(18, 14) (22, 5) (22, 18)

Group Order-Let E be the elliptic curve order over a
finite field . Hasse’s theorem states that the number of
points on an elliptic curve (including the point at infinity)
is #E (F) = qt+1-t where [t[<2 \/5, #E(F,) is called the order
of an elliptic curve E and t is called the trace of E'?. In
other words, the order of an elliptic curve E(F,) is roughly
equal to the size q of the underlying field"?. However,
since the number of points n our elliptic curve 1s small, we
can use the naive approach to determine #E(F,) using
scalar multiplication/addition approach.

In the development and implementation of elliptic
curve cryptography we are interested in the method for
computing an equation of the form kP where, k is an
integer m the range of [1, n-1], n 1s the order of the elliptic
curve Eand P = (x,, y,) ¢ E (F,) is a non zero point on a
given elliptic curve E. Here, P is usually a fixed point that
generates a large, prime subgroup of E (I )including the
point at O, or P is an arbitrary point in such a subgroup.
This system of computation is known as scalar
multiplication and 18 the heart of ECC scheme.

Point addition: Scalar multiplication i.e., the computation
of kP, where k is a random integer and P is an elliptic curve
generation point, can be defined as the combination of
additions of two points on an elliptic curve. Scalar
multiplication of elliptic curve points can be computed
efficiently using the addition rule together with the
double-and-add algorithm or one of its variants. TIts
properties, computation and uses will be, therefore, the
core of ECC implementation. The addition of two points
on an elliptic curve is defined in order that the addition
results will be another pomnt on the curve as presented
Algorithm 1 and Fig. 1.

Algorithmn 1: Point addition equation
Input: P, = (x, v, P = G, 7o)
Output: Pi+P; =P3 = (33, v3)
1. K P, =Py x; = AHA+a, y3 = x4 +HA+1)x; where , A = x+y,/%
(Point. doubling)
2. Else if Py# Py x5 = A2 A+ txota, ys = A He) sy,
where, A = (y,+v2)/(x;+x;)  (Point addition)
3. Retm: (X5, y3)
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Fig. 1: Elliptic curve

In either case, when P, = P, (doubling) and P #P ,
(pomt addition), major operations are field multiplication
and field inversion. {(Squaring and field addition are
enough ignorable because of its less computation time.)
From these formulas of Algorithm 1, we can determine the
number of field operations required for each kind of
elliptic curve operation. We see that an addition step
usually requires eight additions, two multiplications, one
squaring, three reductions mod f(x) and one inversion. A
Doubling step usually requires four additions, two
multiplications, two squaring, four reductions mod f(x)
and one inversion. A Negation step requires one addition.
The important contributors to the run time are the
multiplications and inversions!™. Just as modular
exponentiation determines the efficiency of RSA
cryptographic systems™, scalar multiplication dominates
the execution time of ECC systems. In all the protocols
that are fundamental implementation of ECC, say ECDH,
ECDSA, ECAES etc., the most time consuming part of the
computations are scalar multiplications. Elliptic curves
have some properties that allow optimization of scalar
multiplications.

Implementation of multiplication/addition over an elliptic
curve group modulo p: Let us consider an equation of
the form Q = kP. For a positive integer k we let [k] denote
the multiplication-by-k map from the curve to itself.
This map takes a point P to P+P+.....+P (k summands).
The notation [k] 15 extended to k<O by defiung
[0]P = O and [k]P = -([k]P). So for instance,
[2]P = P+P, [3]P = P+P+P and [-3]P = -(P+P+P).
Furthermore, for a given point P on an elliptic curve E,
there 18 a mimimum positive mteger n such that nP = O,
the identity point or point at infinity. Integer n 15 called
the order of the point P. Tt is known that n is a divisor of
the order of the curve E. These scalar multiples form a
subgroup of points<P>. Here,<P> 1s the fimte cyclic
group<P> = {P, 2P, 3P,.....nP}, with order n.
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To test the algorithm, let P =(7,3)c E,; (1,4). Then
2P =(X;, v3) 18 equal to: 2P =P+P= (x, y)H X, y)=
(22, 18). Next, test addition of two different points on
the curve, 1.e., Q = (4,16) e E(1, 4yand R =(14,18) ¢
E.,s(1, 4). Then Q+R = (x 5y k= (17,9), which we can
observe also to be on the curve. However, for real
implementation of ECC, we need to know the order of the
elliptic curve group.

Let us now implement the scalar multiplication to
form a subgroup of points<P>, where,<P> is the finite
cyclic group<P=> = {P, 2P, 3P....... P}, with order n, by
following the same additive rules and a generator point P.
For example, let P = (7,3) € E,;(1,4) be a generator point
which we use through repeated addition of point to
generate all the point on the curve (Table 1).

Cyclic elliptic curve-Since # E(F,,) = 29, which 1s
prime and which is found by counting all the points, also
known as naive method. E(F,;) is cyclic and any point
other than O 13 a generator of E(F,;). The order n of a
pomt P#0 on an elliptic curve 1s a positive integer such
that nP = Q and mP#O for any integer m such that
1 <m=n. The order n of a point must divide the order N of
the elliptic curve. In fact, it is true for any group. If the
elliptic curve order N = #E(F, ) 1s a prime number, then the
group is cyclic and obviously all points except the point
at infinity O are of order N and which is the case looking
from Table 1.

ECC PROTOCOLS

Key establishment schemes: Key establishment 1s the
process by which two (or more) entities establish a shared
cryptographic secret key and are essential for distribution
of keys in today’s commumcation systems for use with
symmetric and asymmetric cryptography. Essentially, two
methods are used to establish cryptographic keying
material between parties: key agreement and key
transport. With a key agreement scheme, all parties
contribute  to  the derived keying material with
information that allows each party to derive the shared
keving material. With key transport schemes, the
sender determines the key to be transported, wraps
(1.e., encrypts) the key and sends the wrapped key to the
recelver, who then unwraps (1.e., decrypts) the key.

For the scheme which involves symmetric-key only
system, the communicating partners have to manually
establish a shared symmetric-key to be used as the
key-wrapping key between the two parties. The keying
material is wrapped using a NIST-approved key-wrapping
algorithm (such as the AES key wrap algorithm). The
public-key based key agreement schemes can be
transformed mte a key transport scheme using an
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Table 1: Point addition/scalar point multiplicative values of P

1P=<(7,3) 2P =(22, 18) 3P=(18,9) 4P=(4, T) SP=(1,12) 6P = (0, 21)
7P =(9, 12) 8P = (10, 18) 9P =(8, 15) 10P=(14, 5) 11P=(11,9) 12P = (13, 11)
13P=(15,17) 14P = (17, 14) 15P=(17,9) 16P=(15,6) 17P=(13,12) 18P = (11, 14)
19P =(14, 18) 20P = (8, 8) 21P =(10, 5) 22P=(9, 11) 23P=(0,2) 24P =(1, 11)
25P =4, 16) 26P = (18, 14) 27P = (22, 5) 28P = (7, 20) 29P =[0]

kP = P,, is that 29P = P = [O]etc

approved key-wrapping scheme, as recommended in NIST
SP 800-56. An example 13 S/MIME, where key agreement
15 combined with key wrappmg to achieve the effect
of key transport. This is useful because it allows the
efficient encryption of large emails to multiple recipients.
The efficiency 1s that the email content 13 encrypted just
once, with the content encryption key encrypted
(wrapped) multiple times, once for each recipient.

Elliptic Curve Discrete Logarithm Problem (ECDLP):
Recall that the core of elliptic curve arithmetic 1s an
operation called scalar point multiplication, which
computes Q = kP. (For example, 11P can be expressed as
11P = (2*((2*(2*P))+P)}+P). The problem of calculating k
from a given points P and Q 1s called the discrete
logarithm problem over the elliptic curve (ECDLP). Note
that we can easily calculate Q = kP from given k and P, but
1t 18 computationally difficult to calculate the scalar k from
points QQ and P.

The corresponding problem in additive (i.e., abelian)
groups is: given P and kP (P added to itself k times), find
the mteger k. This 1s much more difficult. There 1s no
one-step operation like taking logarithms that we can use
to get the solution. So we may know P and kP and yet not
be able to find k in a reasonable amount of time. This is
called the Discrete Log Problem for abelian groups. We
could always repeatedly subtract P from kP till we got O.
But if k is large, this will take us a very long time. Several
important cryptosystems are based on the difficulty of
solving the DLP over fimite abelian groups. The solution
15 even tougher if the underlying group arises from an
elliptic curve over a prime finite field F,.

Implementation of ECDLP algorithm: As a simple
example, let’s use an overly small value of k and our earlier
elliptic curveie., E(a, b) =Ex(1, 4) (Table 1). Let’s choose
apoint (1, 12) € E,;(1, 4) and try to determine k such that
kP = Q. For example, if Q= (1, 12) and P=(7, 3), then 5P =Q
30 k = 515 the solution to the discrete logarithm problem.
One can also compute Q =kP =1P+1P+1P+1P+1P=(1,12)
= 5P. Here k=5. Alternatively, given Q =kP=(1, 12), we
can continuously subtract P from kP until we get O. But 1if
the curve 1s of a large prime order then it 1s impossible to
use this naive approach for our computation. Take,
for example, an elliptic curve E(a, b) of a large prime
number with:
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p= 6,277,101,735,386,680,763,835,789,423,207,666,41 6,
083,908,700,390,324,961,279

containing a large group of points exactly N points:

N=6277,101,735,386,680,763,835,780,423,337,720,473 986
773,608,255,189,015,329

with

k= 6708,050,311,399,110,513,517,527,207,693,060,456,300
217,054,473

The security of ECC relies on the hardness of
solving the Elliptic Curve Discrete Logarithm Problem
(ECDLP), which states that given P and Q = kP, it
is hard to find k™Y, Because Pchlig-Hellman algorithm
reduces the computation of k to the problem of
computing k modulo each prime factor of n. So if n
is a large prime, the ECDLP becomes harder. In
practice, one must select an elliptic curve that has
some points (base pomt G) which has large prime
order n and #E(F ) = n.h, where, h is a small integer. While
a brute-force approach is to compute all multiples of P
until Q is found, k would be so large in a real
cryptographic application (as indicated above) that it
would be infeasible to determine k in this way. If a prime
p as large as 160-bits long is selected, we cannot find k
within a reasonable time, even if we use the most efficient
algorithms known so far with the world’s most powerful
computers.

KEY AGREEMENT PROTOCOL

EC Diffie-Hellman key agreement protocol: The
Diffie-Hellman key agreement protocol is the basic
public-key cryptosystem proposed for computing key
sharing agreement for both private and public key
protocols. ECDH 1s the elliptic curve analog of the
traditional Diffie-Hellman key agreement algorithm!'*],
The Diffie-Hellman method requires no prior contact
between the two parties. Each party generates a dynamic,
or ephemeral, public key and private key. They exchange
their public keys. Each party then combines its private
key with the other party’s public key to compute the
shared secret’™.
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As an example of ECDH key agreement scheme let us
consider a home-banking subscriber, entity A (Alice),
setting up a secure communication channel with her Bank
entity (B). Alice and the Bank first agree to use a specific
curve, field size and type of mathematics. Alice generates
a public key and a private key; she sends the public key
to her bank. Independently, her bank generates a public
key and a private key; the bank’s public key 1s sent to
Alice. Alice combines her private key and the bank’s
public key to form a shared secret. Her bank combines its
private key and Alice’s public key to arrive at the same
shared secret key. The shared secret may now be used to
generate a shared key for encrypting and decrypting the
communication sessions, as shown in Algorithm 2. We
can see that we just need scalar multiplication i order to
implement the ECDH protocol.

Algorithm 2: Diffie-Hellman protocol
1. A and B each chose random private key k,, and kg, respectively.

2. A and B each calculate A =k,P = (x;, ¥,) and B =kgP = (xz, ¥2);
and send them to opposite side.
3 A and B both compute the shared secret:

Q = ko (kaP) = kn(koP) = kP = (%, xo);5 hared key is k = kuka.

Note that in step 2 we can also compute hk,P and hkpP,
which can resist the attack on small subgroup. where h is a
co-factor defined in P1363

Implementation of ECDH key agreement protocol: As a
simple example, let’s use our earlier elliptic curve i.e., is
E(a, b) = Eu(1, 4). Alice (A) cheoses the secret-key
k, 12 and computes her public-key (Table 1):
Q.=k,P=12P = (13, 11). Similarly, Bank (B) chooses
the secret-key k; = 23 and computes its public-key:
Qp = keP = 23P=(0, 2).

Thus, their common secret-key S,p = k,ks. Alice
computes: k,Qp = 12(23P) = 15P = (17, 9) and the Bank
computes: k.Q, = 23(12P) = 15P = (17, 9). Such that:
S~ kaQp = ksQ, = 15P = (17, 9).

An altemative form of ECDH 1s the Elliptic curve
decisicn Diffie-Hellman problem (ECDDHP) Boneh!™. The
ECDDHP is stated as follows: Given a point P of order n
mnan elliptic curve E over a finite field F, and three points
(kP), (sP) and (mP), the ECDDHP 1s to decide whether
m = kI (modulo the order of point P). The ECDDHP is not
harder than the ECDHP. Boneh, Venkatesan™, Boneh
and Shparlinski®™ discussed many issues on security of
the ECDHP and related schemes.

Key agreement and setup scheme: The ECDH Key
Agreement Scheme as specified n ANSI X9.63 and [EEE
P1363 In ECKAS-DHI (the Elliptic Curve Key Agreement
Scheme, Diffie-Hellman 1), each party combines its own
private key with the other party’s public key to calculate
a shared secret key which can then be used as the key for
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a symmetric encryption algorithm such as AES. Other
(public or private) information known to both parties may
be used as key derivation parameters to ensure that a
different secret key is generated in every session. This
key agreement scheme is described in more detail in
section 9.2 of the IEEEP1363 standard.

Pure DH or ECDH applications are, however,
susceptible to impersonation or “man m the middle”
attack, whereby an adversary establishes digital facades
between two parties in order to obtain private information.
For example, Alice may be setting up a secure session
with someone impersonating her bank. Because the
private and public keys are generated on the fly, there is
no way to prove you have a secure session with the
intended party unless vou add a method for user
authentication. Advanced key exchange protocols such
as the Menezes-Qu-Vanstone (MQV) introduce mutual
strong authentication which allows both parties to
confidently 1dentify each other before exchanging
sensitive mformation. MQV 1s currently deployed through
ECC systems™*].

THE MECHANICS OF ELLIPTIC CURVE
ENCRYPTION ALGORITHM

Elliptic curve cryptography can be used to encrypt
plaintext message, M, into ciphertexts. The plaintext
message M is encoded into a message point Py, from the
finite set of points in the elliptic group, E (a, b). The first
step consists m choosing a generator point, G € E(a, b),
such that the smallest value of n for whichnG = O 1s a
very large prime number. The elliptic group E (a, b) and
the generator G are made public.

Assume that the Bank and Alice intends to
communicate. Each user select a private key and use it to
compute their public-key. For example, Alice (A) selects
a random integer k,<n as her private-key and computes
her public-key P, as: P, = k,G. To encrypt the message Py,
to the Bank (B), Alice uses her private-key and the Bank’s
public-key Py to compute the ciphertext pair of points P.:

Pe = [(kaG), (PyrtkaPe)]

After receiving the ciphertext pair of pomts, P, the
Bank multiplies the first point, (k,3) with its private-key,
k. and then adds the result to the second point in the
ciphertext pair of points, (P, +k,Ps):

Ptk Pe)-[ke(kG)] = (PytkbeeG)-[ka(keG)] = Py

which is the plaintext point, corresponding to the plaintext
message M. Only the Bank, knowing the private-key ki,
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can remove kyk,G) from the second point of the
ciphertext pair of pomt, 1.e., (P +k,Py) and hence retrieve
the plaintext information Py,.

Implementation of Elliptic Curve Encryption Scheme
(ECES): Since #E(F,;) = 29, which 1s prime. E(F,;) 1s cyclic
and any point other than O is a generator of E(F,;). For
example, G = P = (7.3) 1s a generator point such that the
multiples kG of the generator point G (for 1 <k<29), are as
shown in Table 1.

If Alice wants to send to Bank the message M which
1s encoded as the plamtext pomt Py, = (10, 18) € E,;(1, 4).
She must use the Bank’s public-key to encrypt it
Suppose that the Bank’s secret-key 18 ky = 17, then its
public-key will be: P, =k, G =17(7,3)=17G = (13, 12)

Alice uses her secretkey k, = 25 and Bank's
public-key P, = (13, 12) to encrypt the message point
mto the ciphertext pair of pomts: Pr = [(k,G), (Pyt+k.Pg)]
= [(4.16), (22, 5)]

Upon receiving the ciphertext par of points,

P.=[(4, 16), (22, 5)], the Bank uses its private-key, kg, to

compute the plaintext point, Py, as follows:

(Pytk P )-[ke(k, 3] = 27G-19G = &G (10, 18)

and which maps the plaintext pomnt Py, = (10, 18) back into
the original plaintext message M.

Practical Application of ECES: For this part let’s get real
and simulate real application. Let an elliptic curve
group over the Galois Field E(a, b) where, p>3 andis
prime, be the set of solutions or points P = (x,y)
such that (x, y¢ Efa, b)) that satisfy the equation:
v* = xtax-+b(mod p) for O<x<p together with the extra
point O called the point at infinity. The parameters of the
elliptic curve are as follows:

a = 3176890812513255034763174764138276932727465

55927

b = 7905289660787875871812057202571853543210065
1934

p = 85963102379428822376694789446897306207 49856
8951

n = 785963102379428822376693024881 7149576126861
57429 Vvumber of points #E
G = (x,y) \\ generator pomt

Where:

x = 7715072162626498261706482685655798899077692
54176

y = 9015751024655662852527945926651499556253319
6655
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k, = 670805031139911051351752720769306045630021 705
4473 WAlice’s priv. key

ky = 7860050311399110513517527207693060456300217
054
473 \'\Bank’s priv. key

ky = 235505031139911051351752720765306045630021 705
4473 Y\Message enc. key

This is playing Big Boys game so we need a number
cruncher software to do similar computation done above.
Here we will content ourselves with PART a Free, open
source, number cruncher®®?,

Here the curve E(F,) 18 cyclic and any point other than
O 18 a generator of all points on curve. For example,
G = (x, y) 13 a generator point such that the multiples kG of
the generator point G (for 1<k<n), which 13 too huge to
show here.

If the Bank wants to send to Alice the message
M (Append. A), which is encoded as the plamntext point

Py, = (X, Vi) = (2851281040597 236886373218071701 6601
141242058721,
948730026223210722329407 7342398725955
8219668492)

The Bank must use Alice’s public-key to encrypt it.
Suppose that Alice’s secret-key 1s k,, then her public-key
will be:

P, = kG = (50517135491294082980111512034183665522
537517216,
3004291515310424027770375706419 81602845
272146478)

The Bank selects a random number k, and Alice’s
public-key P, to encrypt the message point into the
ciphertext pair of points:

Pe =[(kgG), (PytkaP,)]
[(55060536167255731611311161 54825881 46434984
456674,
SOR20670258459741 553764201 149563581 492589420
3618),
(1723908357770572622250717936439507557160657
75457,
7426170520788598 780501 120202393221 0749902829

8971)]

Upon receiving the ciphertext pair of points, P, Alice
uses her pnvate-key, k,, to compute the plaintext message
pomt, Py, as follows:
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Table 2: NIST guidelines for public-key sizes with equivalent security
levels

Symmetric Minimum size (bits) of public keys

Security encryption

(bits) algorithms DSA/DH RSA ECC
80 Skipjack 1024 1024 160
112 3DES 2048 2048 224
128 AFES-128 3072 3072 250
192 AES-192 7680 TOBO 384
256 AES-256 15360 15360 512

(Pt Pe)-[ke(k.G)] = Py
= (2851281104059723688637321807
17016601141242058721,
94873902622321072232940773423
987259558219668492)

and which maps the plaintext point Py, = (X, vuo) back into
the original plaintext message M.

Elliptic Curve Integrated Encryption Scheme (ECIES):
ECIES combines elliptic curve asymmetric encryption and
the AES symmetric encryption algorithm with the SHA-1
hash algorithm to provide an easy to use encryption
scheme with message authentication support. An ECIES
ciphertext object (Q, C, T) consisting of EC public key Q,
encrypted message C and authentication tag T is
generated from a message M and the recipient’s EC public
key W. The recipient decrypts thus ciphertext with their EC
private key and an exception is thrown if the
authentication tag is invalid. This encryption scheme is
described inmore detail in section 11.3 of the IEEE P1363a
draft standard®.

Following in the footsteps of DESY, ECC in
conjunction with advance symmetric algorithm, AES™,
has already been incorporated into a number of key
mternational standards, mecluding ANSI X9.63, IEEE
Std 1363-2000, TETF RFC 3278, IS0 15946-3 and NIST SP
800-561. Adoption into global standards will assist in
pushing ECC into wider commercial usage. Table 2
compares the equivalent security level for some

commonly considered cryptographic key sizes!'?.

Relative public-key sizes: So what does this mean in
practice? NIST has recommended that 128-bit protection
is necessary to achieve relatively lasting security (to the
year 2036 and beyond). This means moving from 3DES to
AES. To avoid compromising the security of the system,
NIST's FIPS 140-2 standard indicates that keys for
symmetric ciphers such as AES must be matched in
strength by public-key algorithms such as RSA and ECC.
For example, a 128-bit AES key demands an RSA key size
of 3,072-bits for equivalent security, however, for the
same strength the ECC key size is only 256-bits. As you
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can observe from Table 2, while ECC key sizes scale
linearly, RSA does not. The result 1s that the gap between
systems grows as the key sizes increase. This 1s
especially relevant to implementations of AES where at
256-bit security you need an RSA key size of 15,360-bits
compared to 512-bits for ECC. This will have a significant
impact on a commumication system as the relative
computational performance advantage of ECC versus
RSA is not indicated by the key sizes but by the cube of
the key sizes. The difference becomes even more dramatic
as the greater increase in RSA key sizes leads to an even
greater increase in computational cost. So going from
1024-bit RSA key to 3072-bit RSA key requires about
27 times (3% as much computation while ECC would only
increase the computational cost by just over 4 times (1.6%).

CONCLUSION

We have shown that elliptic curve ciphers require
less computational power, memory and communication
bandwidth giving it a clear edge over the traditional
crypto-algorithms. To date elliptic curve cryptography is
gaining wide acceptance, especially in wireless and
hand-held devices, when compared to the conventional
cryptosystems (DES, RSA, AES, etc.) which tend to be
power hungry. However, while the performance
advantages are impressive with ECC, the data security
industry need to ensure that the security system, using
elliptic curve algorithm has been studied extensively in
the public forum and also specified by major standards
worldwide. But we think that elliptic curve cryptography
is here today and is without question the next generation
of public-key cryptography of choice.

Appendix A: Sample text message from the bank to alice

Miss Alice Johnson
Nairobi, Kenya

Dear Miss Johnson,

This letter is to inform you that we have received US3
2.0 million as your first installment due for your mortgage
down payment and opened mortgage servicing account
No. 6688668024 on your behalf and deposited therein said
amount. To service your account you will need to use
your new password GKGQU78BRS3.

Yours very truly,

James M Kavungu

Vice President, Finance

First Finance Bank of Nairobi
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