http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (6): 1053-1057, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

Analyzing the Software Quality Metrics for Object Oriented Technology

'S. Parthasarathy and *N. Anbazhagan
"Department of Computer Science and Engineering, “Department of Mathematics,
Thiagarajar College of Engineering, Madurai-625 015, India

Abstract: Metrics are units of measurement. Software engineering metrics are umts of measurement that are
used to characterize the software engmeering products and software engineering processes. Object-oriented
design and development is becoming very popular in today’s software development environment.
Object-Oriented Programming Structure (OOPS) requires not only a different approach to design and
implementation; it requires a different approach to software metrics. Since object oriented technology uses
objects and not algorithms as its fundamental bwlding blocks, the approach to software metrics for
object-oriented programs must be different from the standard metrics set. Object-oriented analysis and design
focuses on objects as the primary agents involved in a computation. This study addresses the following
questions: (1) what are the concepts in object-oriented technology that affect the software quality? (1) How the
various metrics found m the literature are useful to measure the critical concepts in object-oriented technology.

Key words: Metrics, object oriented design, algorithms

INTRODUCTION

Metrics are units of measurement. The term metrics is
also frequently used to mean a set of specific
measwements taken on a particular item or process.
Software engineering metrics (Booch, 1994) are units of
measurement that are used to characterize: (i) software
engineering products e.g., designs, souwrce code and
test cases (11) software engineering processes e.g., the
activities of analysis, designing and coding and (iii)
software engineering people e.g., the efficiency of an
individual tester, or the productivity of an individual
designer. If used properly, software engineering metrics
allow us to (i) quantitatively define success and failure
and/or the degree of success or failure for a product (ii)
identify and quantify inprovement, lack of improvement,
or degradation m our products, processes (111) make
meaningful and useful managerial and technical decisions.

With object-oriented design
methodologies gaimng popularity, it 1s time to start

analysis and

mvestigating object-oriented metrics with respect to these
goals. Object-oriented analysis and design focuses on
objects as the primary agents involved in a computation.
We are mterested in addressing the following questions:
(1) what are the concepts in object-oriented technology
that affect the software quality? (ii) How the various
metrics found in the literature are useful to measure the
critical concepts 1n object-oriented technology.

DESIGN OF STUDY

Object-oriented design and development are popular
concepts n today’s software development environment;
Obyject-oriented software development requires a different
approach from more traditional functional decomposition
and data flow development methods (Fenton, 1991,
Lorenz and Jeff, 1994). Since the object-oriented metrics
require a cursory understanding of the object-oriented
concepts, we begin with an overview of basic object
oriented structures. Then, we give an overview of the
metrics for object-oriented systems. These metrics include
modifications of traditional metrics as well as new metrics
for specific object-oriented structures. We then discuss
the object-oriented metrics with respect to their
relationship to the attributes of software quality. After
analyzing these metrics through empirical validations,
we give a summary on how the various metrics found
in the literature are useful to measure the critical
concepts in object-oriented technology.

00PS METRICS AND ITS APPLICATIONS

The metrics for object-oriented systems
{(Chidamber and Kemerer, 1994) are given below m two
parts i.e., three traditional metrics and six new metrics
specifically for object-oriented systems. The first three
metrics in Table 1 are examples of how traditional metrics

Corresponding Author:
Madurai-625 015, India

S. Parthasarathy, Department of Computer Science and Engineering, Thiagarajar College of Engineering,

1053

Inform. Technol J., 5 (6): 1053-1057, 2006

Table 1: Sofbware metrics and OOPS applications

Type Metric 0OQPS application
Traditional CC (Cyclomatic Complexity) Method
Traditional RIZE (Lines of code) Method
Traditional COM (Comment percentage) Method
Object-oriented WMC (Weighted Methods per Class) Class/Method
Object-oriented RFC (Response For a Class) Class/Message
Object-oriented LCOM (Lack of Cohesion of Methods) Class/Cohesion
Object-oriented CBO (Coupling Between Objects) Coupling
Object-oriented DIT (Depth of Tnheritance Tree) Tnheritance
Object-oriented NOC (No. of Children) Inheritance

can be applied to the object-oriented structure of methods
mstead of functions or procedures. The next six metrics
are specifically for object-oriented systems and the
object-oriented construct applicable is indicated. Albeit
software measurement 13 a key factor in managing,
controlling and improving the software development
process, software quality criteria are neither well defined
nor easily measurable.

Cyclomatic Complexity (CC) 1s software metric that
provides a quantitative measure of the logical complexity
of a program. Line Count (L.C) deals with counting all
physical lines of code, the number of statements and the
number of comment lines. The Comment Percentage (CP)
1s calculated by the total number of comments divided by
the total lines of code less the number of blank lines. The
Weighted Methods per Class (WMC) is a count of the
methods implemented within a class or the sum of the
complexities of the methods (method complexity is
measured by cyclomatic complexity). The
measurement is difficult to implement since not all

second

methods are accessible within the class hierarchy due to
mheritance. The larger the number of methods i a class,
the greater the potential impact on children since children
will inherit all the methods defined in a class. The
(Response for a Class) RFC 13 the cardinality of the set of
all methods that can be invoked m response to a message
to an object of the class or by some method in the class.
This includes all methods accessible within the
class hierarchy.

Lack of Cohesion of Methods (LCOM) measures
the degree of similarity of methods by instance
variable or attributes. High cohesion indicates good
class subdivision. Coupling between Object Classes
(CBO) 1s a count of the number of other classes to
which a class is coupled. Tt is measured by counting
the number of distinct non-inheritance related class
hierarchies on which a class depends. The depth of
a class within the mheritance (DIT) hierarchy is the
maximum length from the class node to the root of
the tree and is measured by the number of ancestor

classes. The Number Of Children (NOC) is the

number of immediate subclasses subordinate to a
class in the hierarchy. If a class has a large number
of children, it may require more testing of the
methods of that class, thus increase the testing time.

OOPS CONCEPTS AND SOFTWARE QUALITY

Object-oriented metrics must be able to focus on the
combination of function and data as an integrated object.
The object-oriented metric criteria are to be used to
evaluate the following attributes of software quality: (i)
Efficiency (i) Complexity (iii) Understandability (iv)
Reusability (v) Testability/Maintenance. The concept of
inheritance helps us to mtroduce the reusability factor in
our software development. Tt improves the software
quality as it can be characterized as a powerful tool to
control the complexity of the code needed to realize a
system (Eliens, 2000).The encapsulation enhances
software quality by ensuring safety via information
hiding. An object has a public interface that objects can
use to communicate with it. However, that same object
can maintain private mformation and methods that can be
changed at any time without affecting the other objects
depend on it (Satzinger et al., 2002).

Encapsulation has two major mmpacts on metrics (1)
The basic unit will no longer be the subprogram, but
rather the object and (ii) we will have to modify our
thinking on characterizing and estimating systems. The
selected object-oriented metrics are primarily applied to
the concepts of classes, coupling and mherntance.
Information hiding plays a direct role in such metrics as
object coupling and the degree of information hiding,.

DATA COLLECTION

Data collected through various CH++ programs are
applied to the OOPS metrics specified (Chidamber and
Kemerer, 1994) and the OOPS metric values provided by
software testing tools and the values of metrics arrived at
(Basili, 1996) is also utilised for analyting the software
quality factors. The Software Assurance Teclmology

1034

Inform. Technol J., 5 (6): 1053-1057, 2006

Table 2: Software metrics and its standard values

Melric CcC LOC CP WMC RFC LCOM CBO DIT NOC
Objective Low Low 200%-30%% Low Low Low Low Low Low
Table 3: OOPS metrics and its calculated values obtained from C++ programs

Parameter WMC DIT RFC NOC LCOM CBO
Minimum 95.00 8.00 106.00 11.00 421.00 29.00
Maximum 1.00 0.00 0.00 0.00 0.00 0.00
Mean 13.41 1.30 33.19 0.16 8.23 5.91
Std. Dev 13.91 1.91 33.21 1.45 62.77 7.47

Center (SATC) at NASA Goddard Space Flight Centre
gives a summary of the objectives for the values
suggested in the above description of metrics as given in
Table 2. The relation between important object oriented
software quality concepts, quality metrics and object-
oriented features identified by Rosenberg and Hyatt
(1997) are shown in the Table 5. Table 5 will be useful for
analysing the usage of OOPS metrics as quality factors
based on the correlation analysis and the statistical
data given in this study.

METHODOLOGY

In this study, we have used Regression and
Correlation (Sharma, 1994) to find the relationship
between the various software metrics for OOPS and its
impact on software quality. The relationship between two
variables such that a change m one variable result m a
positive or negative change m the other and also greater
change 1n one variable results in a corresponding greater
change m the other is known as Correlation. If the second
variable is unaffected by a change in the first, they are
said to be statistically independent. We have used the
Karl Pearson’s Coefficient of correlation which 1s defined
as follows:

UNYXi*Yi-X*Y)
R= — 1 — 1
/N 38 - (XY NS it -y)

Note that R has no umts and is a mere number. If
there exists some relation between two variables, their
scatter diagram shall have points clustering near about
some curve. If this curve 1s a straight line, it suggests
some linear relationship between the variables and this
straight line is known as the Line of Regression. The
coefficient of regression of y on x is given by:

_covarance(x,y) _ oY
= Var(x) oX

and similarly, the coefficient of regression of x on y 1s
given by:

covariance(x,y) oX
byy=————— =1—
Var(y) oY
The regression lines are used to find the value of a
dependent variable, generally, y for known value of x, the
independent variable. In such a case, only one line of
regression that of y on x 1s required. The independent
variable is called predictor and the dependent variable the
predictant. Correlation measures relationship but does not
give the cause. The correlationship may be accidental or
due to some third factor. However, if there 1s a cause,
there is bound to be some sort of correlation. Regression
gives a functional relationship between the variable X and
Y, one being taken as the dependent and other the
independent variable. It enables us to make predictions
for the possible value of one variable for mutual variation
and association between the variables, none being
dependent or mdependent variable. Correlation 1s thus
unsuitable for predictions.

DATA ANALYSIS

Table 3 and 4 provide common descriptive statistics
of the metric distributions. These results indicate that
inheritance hierarchies are somewhat flat (DIT) and that
classes have, in general, few children (NOC). In addition,
most classes show a lack of cohesion (LCOM) near zero.
This latter metric does not seem to differentiate classes
well and this may stem from its definition which prevents
any negative measure. Table 4 shows very clearly that
linear Pearson's correlations (R%: Coefficient of
determination) between the studied Object oriented
metrics are, in general, very weak. Some of the R values
appear somewhat more significant. However, when
applying the scatter diagram, only the relationship
between CBO and RFC seems not to be due to outliers.
We conclude that these metrics are mostly statistically
independent and, therefore, do not capture a great deal of
redundant information.

The values of R* can range between O and 1. When
R’ =1, it means that all the points on the scatter diagram
(Hooda, 2000) fall on the regression line and the entire
variations are explained by the straight line. When R* = 0,

1055

Inform. Technol J., 5 (6): 1053-1057, 2006

Table 4: Correlation analysis (R? values)

Mefrics WMC DIT RFC NOC LCOM CBO
WMC 1.0 0.01 0.21 0 0.36 0.11
DIT 0.01 1.0 0 0 0.01 0
RFC 0.21 0 1.0 0.08 0.29
NOC 0 0 0 1.0 0 0
LCOM 036 0.01 0.08 1.0 0.01
Table 5: OOPS metrics and its relation with software quality factors

Melric CC LOC CP WMC RFC LCOM CBO DIT NOC
OOPS feature Method Method Method Class/Method Class/Method Class/Cohesion Coupling Inheritance Inheritance
Software quality C C U.R C,UR D.,RT D,R D,R RUT D

factor

C-Complexity, U-Usability, R-Reusability, T-Testability, UR-Understandability, D-Design

1t means none of the poimts on the scatter diagram falls on
the regression line, meamng thereby that there is no
relationship between the two variables. Here, R* provides
the necessary link between regression and correlation
which are the related aspects of a single problem of the
analysis of the relationship between two variables. When
R? = 0, there is no correlation between the two variables,
When R’ = 1, there is a perfect correlation. The values in
Table 3 are helpful to identify the distribution as either
positively skewed or negatively skewed (Hooda, 2000).
The standard deviation values indicate the magnitude of
deviation of the observations comprising a set of data in
terms of their distance from the mean.

If the two lines of regression coincide, the
correlation between the variables is perfect, the condition

being

Y 1oY
SO ORr=1 OR r=+1
OX TIOx

If the variables x and y are independent, that 1s, the
coeffcient of correlation between them 1s zero, the lines
of regression of v on x coincides with x-axis and that of x
on y with y-axis and thus cut at right angles to each other.
It 1s also easy to see that r, bxy and byx have the same
sign since 0y and o, are always positive. Hence, from
Table 4 we find that the lines of regression of various
software metrics discussed earlier cut at right angles to
each other.

DEFINING HYPOTHESIS AND FINDINGS

A number of empirical studies have been carried
out for OOPS metrics. But we find that no explicit
hypothesis is being possible
hypotheses with which to examine the empirical work
shown in Table 3 and 4 are as follows:
¢ The existing QOPS metrics can be used to evaluate

software complexity.

evaluated. Two

* The OOPS metrics with values as suggested in

Table 2 and 5 is sufficient to ensure software quality.

As Table 3 and 4 indicates, the results of empirical
validation of OOPS metrics do not give a great deal of
support to either hypothesis. In general the results are not
very compelling. Four classes of observations have been
presented. They are: (1) Tt is clear that the ease of program
comprehension 1s not completely orthogonal to software
complexity. (2) The metric appears to be independent of
generally accepted program structuring technicues. (3) As
the various metrics are statistically independent, their
ability to capture redundant mformation 1s null and void
(4) Assessmg the complexity of the software which will
affect the software quality rigorously is not addressed.

As cyclomatic complexity is proved unsatisfactory on
theoretical grounds by Martin (1988), 1t 1s necessary to
enswre that existing OOPS metrics would account for
software complexity too. As suggested by Rosenberg
(1997) and as shown in Table 2 and 5, though the values
of the various OOPS metrics are set to low, as more than
one OOPS metrics accounts for a software quality factor
and as these metrics are statistically independent and no
existence of absolute correlation, the OOPS metrics
(Chidamber and Kemerer, 1994) has to be refined and due
care 1s still required to ensure that software quality can be
measured and assured through the evaluation of the
software via these metrics.

CONCLUSION AND FUTURE WORK

In this study, we discussed the software quality
factors, software metrics for object oriented structures
and the relation between important object oriented metrics
and software quality factors. The work already carried out
in this domain is also made use in this study and two
hypotheses have been formulated. A set of objections
have been presented towards the hypotheses and the
statistical results are used to support our findings. Object
oriented technology has many advantages, but many

1036

Inform. Technol J., 5 (6): 1053-1057, 2006

unresolved issues need to be addressed before it can be
fully utilized in the development of large-scale systems. Tt
15 evident that the software quality metrics for
object-oriented technology plays a vital role m software
projects and it seems that object-orientation will be
mainstream software development approach of this
decade. Work must be carried out to validate these
metrics across different programming languages and
platforms. Also we are working towards validating the
other metrics mentioned in the literature and develop
improved metrics. Many challenges still call for pragmatic
solutions in order to make objects 1nto productive blocks
for large systems.

REFERENCES

Basili, V.R., 1996, Validation of object-oriented design
metrics as quality indicators. TEEE Transactions on
Software Engineering. Vol. 22, No. 10, October, 1996.

Booch, G., 1994. Object-oriented Analysis and Design
with Applications. The Benjamin/Cummings
Publishing Company.

Chidamber, S.R. and C .F. Kemerer, 1994. A metrics suite
for object-oriented design. TEEE Transactions on
Software Eng., 20: 476-493.

Eliens, A., 2000. Principles of Object Oriented Software
Development. Addison Wesley, TTSA.

Fenton, N.E., 1991. Software metrics: A rigorous
approach. Chapman and Hall.

Hooda, R.P., 2000. Statistics for Business and Economics.
Macmillan India T.td.

Lorenz, M. and K. Teff, 1994, Object-Oriented Software
Metrics. Prentice Hall Publishing.

Martir, 5., 1988. A Critique of Cyclomatic Complexity as
a Software Metric. Software Eng. T., 20: 30-36.

Rosenberg, I.H. and L.E. Hyatt, 1997. Software quality
Metrics for Object-oriented Environments. NASA,
SATC, http://satc.nasa.gov/support/CROSSAPRS7/
oocross. PDF.

Satzinger, I.W., R.B. Jackson and S.ID. Burd, 2002. System
Analysis and Design in a Changing World, 2nd Edn,
Thomson Learning, Canada.

Sharma, G., 1994. Mathematical Statistics. KRISHNA
Prakashan Mandir.

1057

	ITJ.pdf
	Page 1

