http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 5 (6): 1146-1148, 2006
ISSN 1812-5638
© 2006 Asian Network for Scientific Information

A New Textual Description for Software Process Modeling

Atil Fadila and Ghoul Said
LRI Laboratory, University of Badji Mokhtar, BP 12, Annaba, Algeria
Department of Software Engineering, Philadelphia University, P.O. Box, 1101 Amman (11910), Jordan

Abstract: In the present study, we present a new textual approach for software process modeling that presents
many conceptual advantages with regard to actual works in the domain. In fact, a software process is regarded
as a set of sub-processes, which cooperates for realizing the same objective. This vision is natural and present
contribution concerming construction and reuse of software process’s methodologies. In this approach, it's
even possible to associate versions of roles to the same process.

Key words: Activity, methodology, tole, software process

INTRODUCTION

The software process development includes a
complex set of activities dependent on each other which
will give software products. The description of these
activities and products are generally designed under the
term cycle life development of software.

A description of the life cycle of software contains a
clear indication of the implied activities, out products and
their relations. It 1s a description which aims enriching
and helping comprehension, as well as controlling the
development software projects. Sight that with time, the
software projects become increasingly large and complex,
it 1s clearly proved that concentrate only with what is
developed, ie., the products, was not sufficient to
guarantee development of software products of high
quality, reliable and maintainable. For this reason, the
need to give a particular attention to how the product was
developed, i.e., the process, becomes very important.

A process model 1s a generic description of a class
of software process. A model is independent of a
particular project, but it can be adapted to the customer
requirements, or instantiated to produce a particular
software process adjusted with the needs for a particular
project.

During years, a variety of software process models
were conceived to structure and to describe the
construction process of software systems. More recently,
software process modeling treats new challenges
amplified by the mvestigations with which industry of
software must confront. Since modeling software
processes 18 a difficult and expensive task, all approaches
presented in the literature solve some problem, however,
they are not yet entirely satisfactory.

In this study, we propose modeling software
processes by a simple and natural way, using object
approach. The problem that we have confronted is due to
the fact that this approach doesn’t allow the modeling of
all dynamics and constant change of reality. To solve this
problem, we attempt to use the role concept to express
changes and to allow the defimition of one or more
methodologies controlling the behavior of the software

process.
SOFTWARE PROCESS MODELING

The software process is a factor key which allows
providing software systems with large quality, because it
intends controlling and transforming the user's needs into
a software product which meets these needs.

The term software process joins all activities that
have to be achieved in order to develop software. The
methods for implementation of activities depend on the
type and content of development projects and technology
used. For the same type of projects, the same sequence of
activities and the same methods for their implementations
are used (Horvat et ai., 2000).

We can also define the software process as a
sequence of operations required for building up
various information objects (specifications, prototype
documentation, test cases, code...) that compose a
software product (Rueher and Michel, 1990). The software
process can be split into sub-processes, but it is often
very hard to find a good decomposition and to describe
the complex way in which they must communicate.
Processes are dynamic, hard to comprehend and to
reason about.

Corresponding Author: Atil Fadila, LRI Laboratory, University of Badji Mokhtar, BP 12, Annaba, Algeria
Tel: +213 7 1159006 Fax: + 213 3 8872436

1146

Inform. Technol J., 5 (6): 1146-1148, 2006

A process model is the formal expression of a part of
the process, with the goal to understand, communicate,
improve, support or automate the process (Estublier,
2005). Process technology supports a process in order to
consistently reach the goal within predefined time, budget
and quality constraints.

A software process model (SPM) is a descriptive
representation of the software process structure, used as
a reasoning support, allowing its understanding and its
progress (Ghoul, 1995).

Analysis of any process get appears two levels:
structural level which represent objects on which
process's activities perform and methodological level
describing the policies which lead the process and its
component methods.

SPM = ({Methodologies: Policies, Mechanisms},
{Structures})
ROLE APPROACH

The concept of role is a concept which is not specific
to a particular field, but it is rather regarded as a concept
to integrate into the data models. This concept is intuitive
and important allowing a simple and natural modeling
of applications and facilitates comprehension (Atil et al.,
2004; Atil et al., 2005).

The decomposition of the application domain into
hierarchy of data abstraction is simple; on the other hand
the determination of the behavior of these abstractions is
not also easy.

Once the decomposition of data is made, we are in the
presence of several functions that we must assign to the
hierarchy of classes. These functions are not basic or low
level functions which will be easily attached to each data
abstraction but rather form part of the behaviors related to
the application domain. These behaviors or high level
functions are usually specified by the term Role.

During the description of a system, the experts of a
given field often speak in term of these roles and
functions. Some object oriented methods are more
favorable to discover roles that others; the roles of the
application domain can be found by inspecting the
dynamic and operational views of the system such as use
cases and the interaction diagrams between objects.

A fundamental aspect of the roles is that they are
often detailed with a given situation. In example, a same
person can play several roles; she can be a bank clerk and
at the same time employees representative.

As in the real world, all the roles camnot exist
concurrently; it is unreasonable to model the same person
to play at the same time the role being an employee and
the role being unemployed. Simple constraints can be
defined automatically in the role with deactivation of other
currently active roles on the object, when the role is

activated. The opposite applies as well;, if a role is
deactivated, it can deactivate other roles or it can activate
other roles previously deactivated The call of the
methods on inactive roles is not possible (Graversen and
Beyer, 2002).

The mission of role modeling is to reduce complexity
at the time of the large scale design; such as complexity
due to the size of the tasks of design. This is done by
supporting the separation of the concerns and reusable
design (Atil et al., 2004, 2005).

PROPOSED APPROACH

In our approach, a software process can be simple or
complex, i.e., compound of a set of sub-processes which
cooperate in order to achieve the same objective. So, they
are related to each other in different way: Serving, using
and communicating with each other. From the way in
which they treat one another, processes have different
perspectives of each other. These perspectives define the
role that a process may play towards another. A role is
formed as a set of behaviors of the process. Different
roles exist for different purpose and the roles played by a
process may change over time.

In this approach, process’s activities can exist in
many versions and can be organized during time in many
different manners. Each acceptable orgamzation of
activities defines process behavior (a methodology of its
working). In this way, behavior presents the associated
process as a states machine (McGregor and Dyer, 1993).
The process’s behavior according to a determined
objective defines its role and the role is then a sensible
series of activities.

The modeling of such process is essentially based on
the definition of the set of composing sub-processes, of
dependencies between its activities and of roles that it
offers (Fig. 1).

A formal process define a generic software process
model, offering some alternatives, from which, we can
generate specifics software processes (Real processes).
The generation is done according to an appropriate
behavior and allows then the solving of a particular
problem.

In the Interface part, we identify the list of roles that
the process offers. Each role defines a perspective that a
process may play towards another.

Process <Process Name™=;

Irgerface <Interface description: Tdentification of roles=
Sub-Processes <Definition of the set of composing sub-processes>
Functional Dependencies

<Definition of functional dependencies>

Organizational Dependencies

<Definition of the set of roles>

End <Process Name>

Fig. 1: Defuution of a formal process

1147

Inform. Technol J., 5 (6): 1146-1148, 2006

In the Sub-processes part, we present the list of sub
processes that compose our process.

The functional dependencies part regroups all data
flux and control flux dependencies. They must be verified
every time and are explicitly defined by the relation
function that has a changeable semantic. The function
dependency expresses that a set of target activities TA
depends on an optional set of imtial activities IA under
the optional constraint Ctr. When all activities of TA are
executed, activities of TA could be executed under the
constraint Ctr.

Formally, tlus dependency 1s defined with: [IA]
[Ctr] - TA, were Ctr is defined with <condition; value;
sense>. The condition attribute defines conditions that
must be satisfying in order that dependency being valid.
Value attribute defines the data flux required by thus
dependency. Finally, sense attribute defines the semantic
of dependency, which can be repetition (*), mmplication
(M), exclusion (—), equivalence (~), instantiation (3), etc.

Fmally, the Organizational dependencies part allows
the modeling of behaviors of the software process. We
describe each role of the process which 1s an orgamzation
of activities during time (with Synchronous and
Alternation dependencies) as well as their hierarchical
organization (with Aggregation dependency).

Synchronous: This dependency allows ordering activities
mn time. It’s expressed with: Syn al, a2, ..., an Endsyn.
Activities none implicated in a Syn dependency may be
executed in any order.

Alternation: It’s a dependency, which allows establishing
a nil order between a set of activities. These activities are
then alternated and could constitute a varying activity. By
nil order, we imply that only one of concerned activities
can be executed. This activity will be determined
dynamically according to explicit or deduced contextual
knowledge. It’s defined with: Altal, a2, ..., an Endalt. Only
one activity ai (i = 1, n) must be executed and all the
others will be 1gnored.

Aggregation: It allows constructing a complex activity
with hierarchical composition (designed by an identifier)
of different activities. If the composition 1s designed
with an identifier, this last will indicate the resulting
activity. Such dependency will be expressed with: {IAl,
TA2, ., TAn} <p;e,U> - TA, were TA is the identifier of
the resulting activity. None designed composition don't
construct a complex activity.

Owing to such model, we can define a formal process
that can be independent of any problem and from which
we can generate a real process as an instance that can
take part in development of specific software processes.

Therefore, according to need, we can define or
modify different methodologies (behaviors). The
instance's methodology, generated from a process,
imposes to this last a controlled behavior that can be
automated. This vision offers a considerable benefit for
software processes modeling.

CONCLUSIONS

Modeling software processes 1s a difficult and
expensive task. It's confirmed by diversity of software
processes modeling approaches presented in the literature
and which are however, not satisfactory.

The goal of this study is to present a new and natural
modeling approach of software processes based on a
textual descripton This approach i1s based on the
concept of role which define a perspective that a process
may play towards another. Tt is formed as a set of
behaviors of the process. Different roles exist for different
purpose and the roles played by a process may change
over time.

We note that benefit of our approach 1s in the
methodology of the process which is more explicit, more
formal and especially well structured. We have then
the possibility of formal verification of methodologies
and reasomng and we can then construct complex
methodologies with a modular manner by reusing
composing process's methodologies.

REFERENCES

Atil, F., 3. Ghoul, D. Meslati and N. Bounour, 2004.
Modeling Software process using roles. 17th Intl.
Conf. Software Sys. Eng. Applications (ICSSEA)
Pars.

Atil, F. et al, 2005 Role based software process
modeling. TSPS’2005, 7th Intl. Symp. Programming
Sys., Algiers.

Estublier, J., 2005. Software are processes too. Software
Process Workshop (SPW), Bejing.

Ghoul, 8., 1995. Methodological and structural aspects in
software processes models. Ph.D Thesis, University
of Annaba.

Graversen, KB. and J. Beyer,
programming using roles.
Copenhagen.

Horvat, R.V. et al., 2000. SoPCoM mode] for evaluation of
the software processes complexity. EuroSPT 2000,
Copenhagen, Denmark.

McGregor, J.D. and D.M. Dyer, 1993. Inheritance and
state machines. ACM/SIGSOFT, pp: 61-69.

Rueher, M. and C. Michel, 1990. Using objects evolution
for software processes representation. Proc. 22nd
Annu. Hawaii Intl. Conf. Sys. Sci., 2: 121-130.

2002. Conceptual
IT Umnversity of

1148

	ITJ.pdf
	Page 1

