http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 6 (2): 222-226, 2007
ISSN 1812-5638
© 2007 Asian Network for Scientific Information

Modular Simulated Ammealing in Classical Job Shop Scheduling

'S. Jayalakshmi and %S.P. Rajagopalan
"Department of Computer Science, S.D.N.B. Vaishnav College For Women,
Chromepet, Chennai-600 044, India
‘Mohammed Sathak Group of Educational Institutions, Chennai-600 005, India

Abstract: In this research, a parallel implementation of a Modular Simulated Annealing (MSA) algorithm,
applied to classical JTob-Shop Scheduling (JSS) problems is presented. The implementation has been done as
a multiple 1sland system suitable to run on the Distributed Resource Machine (DRM) environment, which is a
novel scalable, distributed virtual machine developed based on Java technology. The support of the DRM
environment was very effective with respect to message passing, having collaboration with a remote machine.
The empirical results show that the method proposed is quite successful compared to the ordinary MSA and

other systems described m literature.

Key words: Modular simulated annealing, job shop scheduling, parallel implementation, distributed resource

machine, multi island systems

INTRODUCTION

Simulated Annealing (SA) is a stochastic heuristic
algorithm in which the solutions are searched in hill
climbing processes constantly commenced by random
moves. SA 1s an extremely popular method for solving
large-sized and practical problems like job-shop
scheduling, timetabling and traveling salesman problem.
However, SA may become trapped by any local minima,
which does not allow moving up or dowr, or take a long
time to find a reasonable solution. For this reason, many
SA implementations have been done as part of a hybrid
method. In this study, we investigated a parallel version
of Modular Simulated Annealing (MSA), a new SA
algorithm that works like an evolutionary process as an
operator with a population of solutions (Aydin and
Fogarty, 2002). In order to reach a better result by SA
algorithms, 1t 1s necessary to give sufficient time to SA.
This makes the process longer which could be much more
time consuming, if SA works with a population.
Although MSA manages to reach good result in a shorter
time, it may require the longer time for very hard problems.
The idea of this work is to parallelize MSA to improve its
performance in job shop scheduling problems.
Parallelization can be done by partitioning the population
n to sub parts, so that SA can be parallelized as multa
island models.

Here, we have tackled classical job shop scheduling
problems which are otherwise known as static scheduling.

The benchmark problems undertaken are very hard
problems collected m the OR library (Beasley, 1990), a
collection of benchmark problems for OR studies.
The implementation has been done as a multiple island
model to run on Distributed Resource Machine (DRM),
which 13 a novel scalable distributed problem-solving
environment (Jelasity etal, 2002). Each island has run
a separate MSA algorithm in parallel with other peers.
The empinical results of ordinary MSA and parallel MSA
are compared to show that parallel implementation of
MSA is quite successful.

DISTRIBUTED RESOURCE MACHINE (DRM)

The DRM is a Peer-to-Peer overlay network on the
Internet forming an awtonomotus agent environment. The
applications are implemented as multi-agent applications.
The exact way an application is inplemented i the multi-
agent framework is not restricted in any way. In the
DRM every node is completely equivalent. There are no
nodes that possess special mformation or have special
functions. The nodes must be able to know enough about
the rest of the network m order to be able to remam
connected to it and to provide information about it to the
agents. Since DRM is an autonomous agent environment,
the applications are implemented as multi agent systems.
The environment has very good functionalities to develop
applications such that the agents would have good
communication and limited mobility.

Corresponding Author: S. Jayalakshmi, Department of Computer Science, 8.D.N.B. Vaishnav College For Women,
Chromepet, Chennai-600 044, India Tel: 044-22235840

Inform. Technol. J., 6 (2): 222-226, 2007

JOB SHOP SCHEDULING

Job Shop Scheduling (ISS) problems have been
attended for a long time. Tt is difficult to reach the optimal
solution m short time, since the problems have a very
wide solution space and there 1s no guarantee to transmit
a better state after a feasible state (Baker, 1974). We are
given a set jobs (J) to be processed in a set of machine
(M) subject to a number of technological constraints.
Each job consists of m operations O), which must be
processed on a single specified machine and each job
visits each machine exactly once. There is a predefined
ordering of the operations within a job. Because of this
order, each operation has to be processed after its
predecessor (PTj) and before its successor (371j). Each
machine processes n operations in an order that is
determined during the scheduling time, although there
1o such an order imitially.

Therefore, each operation processed on the Mi has a
predecessor (PM1) and a successor (SMi). A machine can
process only one operation at a time. There are no set-up
times, no release dates and no due dates. Each operation
has a processing time (pij) on related machine starting on
rij. The completion time of oij is:- ¢ij = rij + pij

wherei=(1,...,m),j=(1, ..., n) and rij = max (¢iP7T j,
cPMi j).

Each machine and job have particular completion
times which are calculated in the following manner:-

n m
CMi:Zcij and Cji:ZCij
j=1 i=1

The overall cbjective is to minimize the completion
time of whole schedule, which is the supremum of
machine’s completion times.

C e = max({ Cypopg s Cam)- A Job-shop scheduling
problem can be represented by a disjunctive graph. The
tasks are the nodes in the graph, each with a single
attribute representing the duration. Two dummy nodes are
mtroduced: the start node and the end node, each with
duration 0. Each precedence constraint is represented by
a directed arc, from a task to its successor. Additional arcs
are added from the start node to the first task in each job
and from the last task in each job to the end node. Each
resource constraint is represented by a bi-directional arc
(or disjunctive arc). Selecting one of the two directions for
a disjunctive arc imposes an ordering on the two tasks
concerned. Selecting an orlentation for every disjunctive
arc such that there are no cycles in the graph reduces
the disjunctive resowrce constramts to precedence
constraints. Given a fully oriented graph, the minimum

223

Fig. 1: A disjunctive graph for a 3x3 job-shop problems

makespan for that graph can be found by computing the
longest path (given by double line in Fig. 1) from start
node to the end node, where the length of an arc is equal
to the duration of the task that starts the arc. The
scheduling problem thus reduces to one of finding
orientations for all the disjunctive arcs such that the
least makespan can be obtaned (Balas, 1969). Local
search methods can operate by changing the orientation
of some of the disjunctive arcs and re-computing the
minimum makespan. It has been shown (Balas, 1969)
that the makespan can only be reduced by changing
the orientation of one of the disjunctive arcs on the
longest path.

MODULAR SIMULATED ANNEALING (MSA)

The modular simulated annealing (MSA) algorithm 18
the partitioned SA algorithm into shorter slices to be
implemented m various configurations together with
different methods and environments. The idea behind
modular SA 1s to have a more uniform distribution of
random moves along the SA procedure. In fact, SA
provides the solution process by a logarithmic
distribution of random moves such that each random
move starts a new hill climbing process to reach the global
minimum. However, the logarithmic nature of this
distribution may not help to rescue the solution from local
minimum as m the case, when SA 1s applied to very
difficult combinatorial optimization problems like some of
the hard benchmerk job shop scheduling problems tackled
in this work. Such problems need more random moves
even in the latter part of the optimization process. But the
probability of having a random move at that stage 1s so
low as to make it longer to reach the global optimum. On
the other hand, modular SA algorithm takes such a short
time that it can be considered an operation when applied
with a context of evolutionary processes and it can be
constantly applied to a particular solution as well as a
population of solutions.

Inform. Technol. J., 6 (2): 222-226, 2007

A typical instance of modular SA algorithm is
presented in the following. In this case, the algorithm is
implemented to evolve a population of solutions running
modular SA constantly up to a predefined number of
iterations. First of all, a population of solutions is
randomly imitialized and then, the number of iterations 15
set. After that, modular SA starts with a highest
temperature (100), which 1s being cooled by cooling
coefficient (0.955) iteration by iteration. When the
temperature cooled to 0.01 short-term SA finishes with
200 iterations, which are counted to complete. The
selected and optimized solution through a modular SA is
put back mto the population. That is the end of one
modular SA process. The succeeding cycle of evolution
starts by selecting another solution randomly from the
population. This process repeats until that total number
of iterations 15 completed.

An instance of modular simulated annealing algorithm:
Begin
Initialize the population,
Repeat:
pick one completed schedule (old),
set the highest temperature (t = 100),
repeat:
select a particular task, conduct a move by
neighbourhood function
repair the new schedule (new)
if (new-old)<0 then replace old with new
else
generate a random mumber (1)
if exp(-(new-old)/t)>1 then replace old with new
endif
endif

=t*0.955
until t<0.01
put the schedule back into the population
Until pre-defined number of iterations
End.

A PARALLEL IMPLEMENTATION OF MSA

As 1t 15 well known, there are two main ways to
umplement a system as a parallel computation. One 1s by
partitioming a whole data set mto subparts and runming
the same algorithm on each of those subparts on multiple
machines or processes and known as physical parallelism.
The second one is more complicated in which the
parallelization is done on the algorithm itself rather than
partitioning the data and is known as algorithmic
parallelism. As discussed in the previous section, MSA

224

gives new opportunities to commence new valuable hill
climbing processes in which the considered particular
solution may have chances to change to better situation.
Therefore, the more time to see a particular solution for
MSA, the better to reach global optimum. However,
operating on a single selution 1s not preferable for MSA,
because of the special local mimmum of solutions. It 1s
better to let MSA operate on a population of solutions to
utilize the diversity of populatior, which causes longer
time. These two constraints make MSA to work on a
rather small-sized population. Unlike genetic algorithms,
we need to work on better designed small-sized
populations to have the advantages of both the diversity
of population and having more consideration by MSA
run. However, it is difficult to have a good spectrum of
solutions m small sized populations. One of the possible
solutions for this can be the consideration of parallel
computing opportunities. The i1dea of this parallel
application of MSA 1s to distribute a rather bigger-sized
population over more 1slands to create more opportumities
for letting MSA mampulate solutions for more tunes even
within a shorter time.

Problem solving with DRM requires partitioning of
the problem into subparts to be applied as a multi-island
model. For this reason, we designed our islands with
repeated MSA algorithm and a small population of
solutions where MSA operates on that population to
evolve it towards an optimum value. The population uses
a simulated armealing based replacement rule to promote
new solutions over the old. The solution tackled per
iteration selected randomly, operated by MSA
algorithm once and then 1s assessed to be replaced with
its parent. One randomly selected solution attempts to

18

migrate to another randomly determined island by a
predefined period. This cycle is repeated for a predefined
number of iterations. In this application, we have a group
of islands consisting of 5 islands each evolving a 10-sized
population and one of them is the root that performs
collecting the bests and providing the islands with
relevant data to mitiate their populations. The idea 1s
presented in the following Fig. 2.

T
.w-\'

D 2N
N/
\/

Fig. 2: Inter-islands relationships for parallel MSA

Island,

Island, Island,

Inform. Technol. J., 6 (2): 222-226, 2007

The islands communicate with one another by letting
the solutions migrate from one to another as well as to
report their bests to the Root Island at the end of every
period. The experiments are launched on DRM by creating
the Root Island first on the root node. The Root Island
creates other islands and randomly dispatches them on
randomly selected living nodes of DRM by providing
them with completely different population, which 15 of
size 10 solutions. The whole size of population operated
within an experiment is thus 50. By this application, we
have got more chances for each particular solution as well
as a more diverse populatior, which provides different
landscape of solutions to search on.

RESULTS AND DISCUSSION

In order to illustrate the efficiency of parallel
implementation of modular SA a series of experiments
were done on job shop scheduling problems. The
problems tackled are very well known difficult
benchmarks, which have been solved by various
researchers to show the goodness of their methods. In
Table 1, the results of both ordnary and parallel MSA
mmplementations are shown as the average value, standard
deviations and then the time taken per experiment in
average and test statistic value t to test the significant
difference between means. The optimal and/or lower

Table 1: Empirical results for both serial and parallel MSA implementations

bound of each problem has been given in the second
column adjacent to the problem names, where the values
given with asterisks (*) are for the optimum and the others
are lower bounds.

The parallel implementation of MSA is a partitioned
version of the ordinary one, cutting the population into
5 parts and dispatching each to a particular parallel 1sland.
Thus, each individual in this case has got exactly the
same number of manipulation as the individuals in the
case of Ordinary MSA. Since the MSA operates on an
individual 200 times per cycle, each mndividual has been
seen and operated 1000 times. Therefore, every island
totally allows 10 individuals to migrate to another island
and accepts in experiments have been repeated 5 times per
problem. Comparing both cases, we can easily see that
there 1s statistically no difference between the results of
the parallel version and the ordinary one, apart from T.A38.
On the other hand, the time taken is very different. The
ordinary case has taken more or less 4 times than the
parallel one. This is the significant aspect of the MSA
method. The results for all situations are shown in
Table 2 presenting %o error between the average of found
values and optimal ones. On the horizontal axis, the
benchmarks are given in number representing ABZ7,
ABZ8, ABZ9, LA21, LA24, LA25, LA27, LA29,L.A38 and
LA40, respectively. As it is, there is no significant
difference among those two strategies.

Problem Ordinary MSA, Pop-50 Parallel MSA, Pop-50¢10 per Island) Test statistic
Name Optimum Mean SD Time Mean SD Time t-value
ABZ7 655 675.5 2.12 10542 675.2 2.8 1345.2 0.2416
ABZ8 038 086.8 4.95 10491 0687.2 4.9 1802.6 0.1624
ABZ9 056 099.0 1.41 10465 703.0 29 1478.4 0.8772
LA21 1046* 10494 2.88 5052 10484 2.7 738.2 0.7165
LA24 935+ 939.2 2.68 4933 936.6 1.5 470.2 0.3684
LA25 977 978.4 2.19 5161 977.8 1.8 935.2 0.5987
LA27 1235% 1244.4 4.56 6997 12454 3.9 882.2 0.4714
LA29 1130 11774 7.54 0830 1182.6 0.1 1047.8 1.5165
LA38 1196 1201.8 3.77 7802 1214.6 3.0 1043.4 7.5155
LA40D 1222+ 1230.8 3.03 7849 1229.2 2.08 1794.6 1.1187
*Optimum, Others- Lower bounds

Table 2: Error percentage of results for ordinary M8A and Parallel MSA

Problem Ordinary MSA, Pop-50 Parallel MSA, Pop-50 (10 per Island)
Name Optimum Mean Error percentage Mean Lrror percentage
ABZ7 055 675.5 0.030 675.2 0.0308
ABZ8 038 686.8 0.076 087.2 0.0771
ABZ9 656 699.0 0.0655 703.0 0.0716
LA21 1046% 1049.4 0.0032 1048.4 0.0023
LA24 935% 939.2 0.0045 936.6 0.0017
LA25 97T* 978.4 0.0014 977.8 0.0008
LA27 1235% 1244.4 0.0076 1245.4 0.0084
LA29 1130 1177.4 0.0419 1182.6 0.0465
LA38 1196 1201.8 0.0048 1214.6 0.0156
LA40D 12224 1230.8 0.0072 1229.2 0.0631

*Optimum, Others- Lower bounds

225

Inform. Technol. J., 6 (2): 222-226, 2007

CONCLUSION

In this study, a parallel implementation of MSA
algorithm, a shortened SA algorithm, applied to classical
job-shop scheduling problems has been presented.
This parallel implementation has been done on DRM
environment as a multi island system. The tackled ISS
problems are very well known difficult benchmarks, which
are considered to measure the quality of such works.
The empirical results show that compared to the
ordinary MSA the Parallel Implementation of MSA is
quite successful.

REFERENCES

Aydin M.E. and T.C. Fogarty, 2002. Simulated annealing
with evolutionary processes in job shop scheduling.
In Evolutionary Methods for Design, Optimization
and Control, (Proc. of EUROGEN 2001, Athens, 19-21
Sept.) CIMNE, Barcelona, 2002.

Baker, K.R., 1974, Introduction to Sequencing and
Scheduling, John Wiley and Son.

Balas, E., 1969. Machine sequencing via disjunctive
graphs: An implicit enumeration algorithm.
Operations Research, 17: 941-957.

Beasley, JE., 1990. OR Library, Imperial College,
Management School. http://mscmga.ms.ic.ac. uk/info.
html.

Jelasity, M., M. Preu and B. Peachter, 2002. A
scalable and robust framework for distributed
applications. CEC'02: The 2002 World Congress
on Computational Intelligence, May 2002: Honolulu,
HIL USA., pp: 12-17.

226

	ITJ.pdf
	Page 1

