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Abstract: In this study, we propose a novel framework for vessel enhancement in angiography images. The
proposed approach utilize the image directional information to estimate the Hessian eigenvalues with less noise
sensitivity and thus can correctly reveal more small, thin vessels. Also, the directional image decomposition
helps to avoid junction suppression due to which, yields vessel tree are more continuous. Qualitative and
quantitative evaluations show that the proposed filter generates better performance in comparison with

conventional Hessian-based approaches.
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INTRODUCTION

Medical diagnoses are based on correct assessment
of blood vessels. When the mformation 1s minute, then
the navigation and localization of computer guided
procedures are more precise.

In order to provide relief in the problem of calculating
the Hessian in a noisy environment, we have proposed a
new framework for vessel enhancement filter utilizing the
linear directional information present in an image. The
proposed approach decomposes an input image into a set
of directional images, where each image contams linear
features in a narrow directional range. The idea behind
this directional decomposition is that noise in each
directional image will be significantly reduced compared
to that of the original one due to its ommi-directional
nature. Next, the Hessian eigenvalue calculations are
facilitated. Tnstead of calculating from the original image
both Hessian eigenvalues and eigenvectors, which
indicate the vessel directions, as done m conventional
filters, the proposed framework estimate these
eigenvalues in each directional image with the global
vessel direction known m advance. Thern, an appropriate
enhancement filter 1s applied to enhance vessels in each
directional image. Finally, these enhanced directional
images are re-combined to yield an output image with
enhanced vessels and suppressed noise. The experiment
results show that our approach 1s less noise sensitive can
reveal small vessel network and avoid unexpected
junction suppression.

The original image 1s decomposed into 2n(n =1, 2.)

directional 1images, it is proven that noise, which is

largely ommi-directional in nature, in each directional
image, 2" is reduced by 2" times compared with the
original one.

VESSEL MODEL

Vessel enhancement 1s conventionally considered
as searching for line-like or tubular structures in a
given image. Specifically, the intensity image I{(p), where
p = (x; v), is approximated by its Taylor expansion about
a point p, up to the second order:

10p) = I(p, )+ Ap VI(p,) + %ApT.Ha(pU)).Ap M

where,
Ap=p-p

VI (py) and H (I (p,)) are the gradient vector and the
Hessian matrix at p, int pq.

In order to capture vessels with various sizes, we
should compute the gradient and the Hessian at multiple
scales 0 1n a certain range. In this case, the only way to
ensure the well-posed properties such as linearity,
translation invariance, rotation invariance and re-scaling
invariance 13 the use of linear scale space theory
(Florack et al, 1992; Lindeberg et al., 1994), in which
differentiation is calculated by a convolution with
derivatives of a Gaussian:

= 0" G, *L L= 0" G, *I (2)
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Where I, I, G,, and G,, are, respectively the spatial
derivatives in x- and y- direction of the image T (x,y)and a
Gaussian with standard deviation o:

(3)

G (x.y)=——¢

z

2nc

The parameter Yy was proposed by Lindeberg et af
(1994) and Lindeberg (1996) to normalize the derivatives
of the image. This normalization is necessary for
comparison of the response of differentiations at multiple
scales because the intensity and its derivatives are
decreasing functions of scale. In vessel enhancement
application, where no scale 13 preferred, v 1s usually set to
one. Line-like structures can be extracted based on the
analysis of principal curvatures, which are normally
obtained as the eigenvalues of the Hessian matrix
(Frangi et al., 1998). Because a vessel in medical images,
especlally MRA images, 1s bright over darker background
and the brightness 1s decreased from its center toward 1its
boundaries, it 1s supposed that a vessel 1s modeled as a
tube with a Gaussian profile across its axis, which is
identical to the x-axis:

- )
[(x,y)=——¢ % (
p(xy) 2ng’
The first and second derivatives are:
al
—=0—t= _Lzln
ax o,
Ol L _ 0y -0,
o' oexty oy o
Therefore, the Hessian can be expressed as:
2 2
nlh
H- A S (5)
&1, &1, | |01,
oxdy &y’ D
and its eigenvalues and eigenvectors:
A =0 y! -
- Ay = L
v =(10) Ty (6)
v, =(0,1)

When applying multiscale analysis, the model is
convolved with a Gaussian of standard deviation o. The
above derivations are still correct except that o, is
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replaced with \Joi + o’ . We can see from the above
result that at pixels inside the vessel (y*<o ?), we have one
negative eigenvalue corresponding to the eigenvector
orthogonal to the axis of the vessel. The other eigenvalue
15 zero with the associated eigenvector m the same
direction of the vessel axis. Note that i this case, where
the vessel direction (j) 15 aligned with the x-axis,
eigenvalues of the Hessian are same as its diagonal
values. This fact has been exploited in tlus research
study. The directional images are aligned with the x-axis
and eigenvalues are picked as diagonal entries in the
Hessian matrix. The formal calculation of eigenvalues for
a given Hessian matrix 1s entirely avoided.

DFB-BASED VESSEL. ENHANCEMENT FILTER

Our approach consists of the following steps, as
shown in Fig. 2, 1) construction of directional images; 2)
vessel axis aligmng; 3) vessel enhancement and 4)
reconstruction of enhanced images.

Construction of directional images: An angiography
image, which consists of piece-wise linear segments,
could be an appropriate candidate for the decomposition
thanks to the Decimation-free Directional Filter Bank
(DDFB), whose structure is shown in Fig. 1. Specifically,
the input image is decomposed to 2n (n = 1; 2; 1)
directional images T;. The motivation here is to detect thin
and low contrast vessels (which are largely directional in
nature) while avoiding false detection of non-vascular
segregation  property  of
decimation-free directional filter bank 1s helpful m
eliminating randomly oriented noise patterns and non-
structures which normally yield
amplitudes in all directional images.

The angiography image often has non-uniform
llumination. Therefore, a bank of homomorphic filters
(Stockham, 1972), where each one i1s applied to one
directional image, is used to remove the annoying non-
umform illumination.

Distinet homomorphic filters are employed matched
with their corresponding directional images because the
direct application of one homomorphic filter upon the
original image is unsatisfactory in eliminating non-uniform
llumination and may even enhance background noise
(Fig. 3). Besides, application of homomorphic filtering on
outputs of DDFB provides us a better control on the
parameters of homomorphic filter. This arrangement has
made possible by the joint optimization of directional
filters with homomorphic filters, which 1s referred to as
Directional Homomorphic Filter Bank (DHFB). The
structure of DHFB has been depicted in Fig. 4.

structures.  Directional

vascular similar
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Fig. 1: DDFB structure a) First stage b) Second stage ¢) Third stage

Vessel axis aligning: Many vessel enhancement
approaches (Frangi et al,, 1998, Sato et al, 1998,
Lorenz et al., 1997; Shikata et al., 2004), utilize the semi-
local information gained from the Hessian matrix of the
image. There are two main reasons to use the second
order derivatives of the Hessian method instead of
the first order derivatives of the gradient method
(Carmona and Zhong, 1998). One is, the line like structures
are characterized by oscillations and thus yield large
second-order derivatives but do not generate large first
order derivatives.
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Vessels or vascular structures are detected when the
ratio between the mimmal and the maximal second-order
directional derivatives, which are respectively the smaller
and the larger eigenvalues of the Hessian, 1s low. And the
direction having the larger eigenvalues 1s considered to
be the direction along the vessel. However, the estimation
of the vessel direction using the Hessian becomes less
accurate in real medical images because the second-order
derivatives are lughly sensitive to noise. In the proposed
approach, the global directional information of the
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Fig. 2: Block diagram of the proposed enhancement framework. There are four main steps: Construction of directional
images, vessel axis aligning, vessel enhancement and reconstruction

Fig. 3: Result obtained with direct application of
homomorphic filter to original image in Fig. 4 a.
Note that the background noise has been
unexpectedly amplified

vessels, which are obtained from the directional images,
is incorporated in calculating the minimal and maximal
gsecond-order derivatives to reduce noise sensitiveness.
It means that we, as proven in Eq. 5 and 6, can use the
Hessians diagonal values to replace its eigenvalues if the
axis direction is identical the x-axis. Therefore, in this step,
the above resulting directional images are rotated such
that the vessel axis is aligned with the x-axis. Suppose the
directional image L corresponds to orientation range from
U to o, (trigonometrical angle).

I

‘Fomomorphic-2 |—+ L
!nput -
E DDFB -
L

>
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1

Fig. 4: DHFB structure. The output directional images I,
I,, Is become uniform illuminated

It will be rotated by an amount as large as the mean
value m';;

P Ot O @)

m, 2

Let I denote the aligned directional images.

I, = rotate(T,, m.) (8)
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Where i = 1,23,....n and n is the total number of
directional images.

Two demonstrating rotated directional images I can
be seen in Fig. 5.

Then, the Hessian is computed on top of each aligned

directional image. The minimal and the maximal second-
order derivatives in one image can be gained as its
Heszzian diagonal values. Thege values are used to build
up the corregponding enhancement filter described in the
following step.
Vessel enhancement: In this step, each aligned
directional image iz filtered by an appropriate vessel
enhancement filter. The proposed filter is inspired by the
work of Frangi et al. (1998), who utilizes the eigen-values
of the Hessian. Vessel enhancement is considered to be
gearching for linelike structures, where the ratio between
the smaller and the larger eigenvalues iz low. Different
from (Frangi ef al. (1998), we compute the diagonal values
of the Hessian of each aligned directional image. As
shown in Eq. 6, those values are

P (F+
h;, =0;h, =%IU(XJ) ©)
(oo +0)
Where o selected in a range S is the standard

deviation of the Gaussian kemnel used in multiscale
analysis.

Ingide the vessel, |¥|< \Isg +06° and hypis negative.
Practically, the veszel axizis not in general identical to the
x-axis. So h;;~0. Vessel pixels are declared when hy; < 0
and L 1.

x

To distinguish background pixels which have random
noige fluctuation, we define a structureness measurement
which is szimilar to the second-order structureness
defined in Frangi ef al. (1998)

C=1ﬁ;121+h§2

Because background has no structure and small
derivative magnitude, this structureness C should be low.
Based on the above observations, the vessel filter output
can be defined as:

2 2
¢g(p)='nﬂlp)eXp[—éigj{l—eXp[iig]} a1

(10)
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Fig. 5: Two demonstrating rotated directional images.
The vesszel orientations are aligned with the x-axis

where p=(%,¥),R= by and
hZ2

@ 0ifz=0;
Z) =
2= i 2 <0,

(12)

The filter is analyzed at different scales o in a range S.
When the scale matches the size of the vessel, the filter
response will be maximum. Therefore, the final vessel filter
response is:

D(p) = max ¢, (ps) (13)

One filter (13) is applied to one directional image to
enhance vessel structures in it. Then all enhanced
directional images are re-combined to generate the final
result as follows.

Reconsiruction of enhanced images: Each directional
image now contains enhanced vessels in its directional
range and is called the enhanced directional image.

Denote @, (p), I = 1..n, as the enhanced directional
images. Those images need rotating back to their original
orientations.

@ (p) = rotate(<D; (p),~m;) a4

where m} is given in (7).
The output enhanced image F (p) can be obtained by
either

F(p) = max D (p) {s)
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or

F(p) =D ) (16)

In our implementation, the latter is used for its
simplicity.

EXPERIMENTAL RESULTS

Experiments are employed with both synthetic images
and real medical images to verify the performance of the
proposed DFB-based enhancement filter in comparison
with the filters introduced by Frangi ef a/. (1998) and
Shikata et ¢l. (2004). In all experiments using our propozed
filter, the input image iz decomposed to sixteen directional
images {n = 4) as a trade-off between performance and
execution time. The scale range S={1,1.E,2,2\E, 4} isused

for all three models.

For qualitative comparison, we applied the three
filters to a synthetic image and couples of angiography
images. Our proposed approach provides improved
results in the sense that it avoids unexpected junction
suppression and is able to reveal more small vessels. To
obtain quantitative performance evaluation, a series of
phantom images characterizing most of the common
challenges to vessel detection are constructed and a
goodness measurement is used to evaluate the results
obtained by employing each filter to those phantoms. It is
shown that our proposed filter outperforms the others.

Junction suppression: Figure 6 shows the results of
an synthetic image on which the three filter models are
employed. The suppressed junctions make vessels
discontinuous. Although this error may be small, it can
cause the splitting of a single vessel, which in turn can
have a critical effect on the vessel tree reconstruction
accuracy. It is the use of directional image decomposition
that makes the proposed model work. Normally, a vessel
has one principal direction, which is mathematically
indicated by a small ratio between the smaller and the
larger eigenvalue of the Hessian. Meanwhile, at a
junction, where a vessel branches off, there are more than
two principal directions and thus the ratio of two
eigenvalues is no longer small. As a result, the
conventional enhancement filters (Frangi ef al., 1998;
Shikata ef al., 2004) consider those points as noise and
then suppress them. Our proposed approach, on the other
hand, decomposes the input image to various directional
images, each of which contains vessels with similar
orientations. During the re-combination of enhanced
directional images, junctions are re-constructed at those
points which have vessel values in more than two
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Fig. 6: Vessel enhancement results. {(a) The original
synthetic image (b) Enhanced image by our

approach (c) by Frangi method and (d) by Shikata

method. The Frangi and Shikata models
unexpectedly suppress the junctions while ours
does not

Fig. 7: Vessel enhancement in actual medical images
shown in Fig. 1. LEFT columm: Enhanced images
by our approach method, MIDDLE columm: By
Frangi method and RIGHT column: by Shikata
method. The Frangi and Shikata models fail to
correctly enhance small vessels but our approach

succeeds

directional images. Therefore, junctions are not only
preserved but also enhanced in the final output image.

Small vessel enhancement: Figure 7 shows our approach
enhancement results (left column) compared to resulis
acquired using Frangi {middle) and Shikata (right column)
filters. The dataset used here are angiography images with
typical challenges to exact vessel reconstruction abovel
and shown in Fig. 1. As can be observed, Frangi filter
gives good results with large vessels but fails fo detect
small ones while Shikata model is able to enhance small
vegzels but unfortunately enhances background noisze
also. Converzely, our proposed filter can enhance small
veszel s with more continuous appearances.

Quantitative evaluation: A series of testing data were
generated from the original phantom by adding various
levels of white noise, having variance of 5 to 80%. The
noise variance is calculated as a percentage of the 8-bit
dynamic range of the image (0-255). The 80%-variance
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data was selected to explore the enhancement
performance for the worst case. Tt means that, to our
experience, this data represents the most possibly
challenging situation, which 15 well beyond any worst

case of real clinical images.

CONCLUSIONS

We have presented in this study a novel approach to
vessel enhancement m angiography images. The
proposed DFB-based filter overcomes lmitations of
conventional IHessianbased methods such as noise
sensitivity, junction suppression and limited small vessel
enhancement. The qualitative comparisons and
quantitative evaluation performed on both synthetic and
real medical images showed these improvements.

Our proposed approach utilizes the image directional
mformation obtained by the Decimation-free Directional
Filter Bank (DDFB) to provide a relief in Hessian analysis
in neoisy environment. During the directional image
decomposition, noise in each resulting directional image
1s reduced compared with that in the origmal one. Then,
mstead of calculating both Hessian eigenvalues and
eigenvectors, which indicate the vessel directions, as
done in conventional filters, our framework estimates
these eigenvalues in each directional image with the
global vessel directions known a priori. Consequently, the
Hessian analysis in the proposed frame work is more
noise robust and thus our filter can enhance small vessels
with less noise sensitivity. In addition, the fact that
enhancement filters are applied on not the original image
but the directional ones, which contains vessels in similar
orientations, helps to avoid the unexpected junction
suppression. In conclusion, although the proposed DFB-
based filter 1s computationally costly, we consider it a
suitable candidate for a pre-processing step in an accurate
vessel-tree reconstruction in clinical tasks because of its
good performance.
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