http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 7 (7). 1055-1060, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

Developing an Intelligent Tutoring Systemn For Students Learning To Progran in C++

Samy S. Abu Naser
Faculty of Engineering and Information Technology, Al-Azhar University, Gaza, Palestine

Abstract: The aim of this study 15 developing an intelligent tutoring system for helping students emrolled in
computer sciences 1 (an introductory C+ programmuing course) at the Faculty of Engineering and Information
techmology in Al-Azhar Umversity. The Ci+ Intelligent Tutoring System is called CPP-Tutor. In this paper we
present an overview of the CPP-Tutor architectural design and user interface. This pilot project is for
constructing a model domain of a subset of the CH++ programming language. The completed project will be
sufficient to prove the concept and that a fully developed C++ Intelligent Tutoring System will provide an
interactive learning environment for students. According to the success of other similar Intelligent Tutoring
Systems, it is also hypothesized that students will be able to learn to program in C++ and gain knowledge more
quickly and effectively than students using traditional methods of teaching.

Key words: Artificial mtelligence, intelligent tutoring system, C++, programming, e-leaming

INTRODUCTION

An Intelligent Tutoring System (ITS) provides
individualized computer-based instruction to students
(Abu Naser, 2006, 2001 ; Brusilovsky et al., 1996). These
systems emerged from application of artificial intelligence
techniques to the Computer Aided Instruction (CAT)
systems (Abu Naser and Sulisel, 2000). The difference 1s
that an ITS usually compares the students work with
expert solutions or strategies, models the student's
probably knowledge of a domain and provides coaching
or advice, taking mto account what the student's
knowledge state and preferred learning style. Depending
on Artificial Intelligence and cogmtive science, ITS
became very popular and effective domain in Education
for many reasons: Better student performance, student
learns in less time and student is in the driver seat
(Anderson et al., 1995; Woolf et al., 2001 ; Graesser and
Parson, 2001). For many vyears, there i1s a continuous
development and evaluation of ITS (Shute and Glaser,
1990) for tutoring and momtoring programming m the field
of artificial intelligence in education. Programming
requires a group of problem-solving and diagnostic
strategies. The behavior in which a student writes code
provides great insight into the way of his thinking. As a
result, programming provides attractive area to study
learning and cognitive processes (Koedinger, 2001).
Among the objectives of this undergoing research is to
gather the developments in the ITS, Cognitive Science
and AT to make a useful intelligent tutor to: help students
learming to program in C++ and provide personalized
mstruction for students leaming to program i C++.

Furthermore, it is hoped that this research will have a
positive impact on supporting instructors teaching CH+
programming in their classroom.

Tutors related to CPP-Tutor have been developed to
teach programming languages like: PROUST (Johnson
and Proust, 1985) and LispTutor (Anderson and
Skwarecki, 1986), MENO-II (Soloway et al., 1983) and
ELM-PE (Weber and Mollenberg, 1995). They iwolved
students in entering code to solve a given problem.
PROUST attempted to estimate the students’ plan
mntentions, while LispTutor guided their left-to-right, top-
down attempts in a highly directed fashion by interpreting
their code as a correct or a buggy solution. MENO-IT and
ELM-PE analyze the user’s solutions to exercises and
provide feedback to identified misconceptions or missing
skills based on the analysis. Other approaches have also
emerged in intelligent tutoring paradigm. Kumar’s model-
based tutor asks students to predict C++ programs’
output and 1dentify semantic and run-time errors (Kumar,
2002). It provides explanations of program execution line
by line to help students understand code behavior.
Adaptive navigation based on student modeling 1s used
in a web-based system called ELM-ART I (Weber and
Specht, 1997) to provide individualized annotated
hyperlinks and curriculum sequencing. Expert critiquing
systems provide useful feedback to users’ work in many
domains. Such feedback includes alerts to problematic
situations, relevant information to the task at hand,
directions for improvement and prompts for reflection
(Silverman, 1992). One of these systems is Java Critiquer
that uses an mncremental authoring approach to amortize
the high development cost (Qiu and Riesbeck, 2004).

1055

Inform. Technol J., 7 (7): 1055-1060, 2008

Problem: Write a program in C++ which find and print the cubic value for
each integer between -5 and +5.

Program specilications: This program can be written using for or while
loop.

The solution which is authored by Instructor:
#include<iostream.h>
void main() {
int ¢, j=-5;
while (j <= 5) {
C=ji%h
it
cout << ¢ << endl;
}
}

The student [irst possible error : (missing #include<iostream.h> in
line 1)
void main (){
int ¢, j=-5;
while (j <= 5) {
c=j*j*i
jt*
cout << ¢ << endl;
}
}

The student second possible error: (void is missing in line 2)
#include<iostream.h>
main () {
int ¢, j=-5;
while (j <= 5) {
c=j*j*i
it
cout << ¢ << endl;
}
}

The student third possible error: (unknown Int in line 3)
#include<iostream.h>
void main() {
int ¢, j=-5;
while (j <=5) {
c=j*j*
jtt
cout << ¢ << endl;
)
b

The student [ourth possible error: (undeclared variable ¢ in line 5)
#include<iostream.h>
void main() {

int j=-5;

while (j <=5) {

c=j*j*j

jtt

cout << ¢ << endl;

}

)
The student [ilth possible error: (the hody of the loop is never

executed)
#include<iostream.h>
void main() {
int ¢, j=-5;
while (j >=5) {
c=i"i*k
iR
cout << ¢ << endl;
)
}

Fig. 1: Continued

The student sixth possible error: (last value in the range is not
calculated, i.e., *+57)
#include<iostream.h>
void main() {
int ¢, j=-5;
while (j < 5) {
c=jrit
it
cout << ¢ << endl;

}

The student seventh possible error: (the output of the last value of ¢
printed only)
#include<iostream.h>
void main() {
int ¢, j=-5;
while (j <= 5) {
c=j*i*
it
)
cout << ¢ << endl ;

}

Fig. 1: A problem example with a solution and a few errors

Other systems like CTutor (Song et al., 1997), Prolog
Tutor (Hong, 2004) and Tava Intelligent Tutoring System”™
(Sykes and Franek, 2003} adopts advanced code analysis
to see what 1s the intention of student and give feedback
based on this analysis.

Architecture of CPP-tutor: We present the model and
architecture for the C++ mtelligent tutoring system, the
knowledge base design, expert module design, feedback
module design and the user interface design.

CPP-tutor knowledge base design: Here we describe the
Knowledge Base architectural module for CPP-Tutor. In
the cuwrent pilot project we use a subset of CH++
programming language grammar to be tutored. We have
concentrated on the following topics of the standard C++
language (Alexandrescu, 2001): variables declaration,
operators, assignments and looping (for loop and while
loop) structures.

For every problem stored in the database, we have
stored one possible solution, a few possible errors for
specific categories and a few possible hints for each error.
Figure 1 shows a problem example with a solution and
SOIILG eITOrS.

There are many possibilities for student answers and
the system cannot simply list all incorrect answers of the
student. For instance, the student could write:

¢ = pow(j, 3); or ¢ = pow(j, 2)* j
Both answers are completely correct and the system

needs to recognize these types of answers and not treat
them as incorrect answers. Testing the correctness of a

1036

Inform. Technol J., 7 (7): 1055-1060, 2008

program is a hard task. CPP-Tutor is designed to be
pedagogically sound (Sykes and Franek, 2003). So,
although the above formulas result in correct answers,
this 1s not the only goal of the tutoring system. Rather,
CPP-Tutor focuses on the methodology by which a
student attempts to solve a problem. Just as presented in
this example, CPP-Tutor is focusing the student on the
problem on hand by specifying the location where code
may only be written. Conventions, style and professional
programming techniques are modeled in CPP-Tutor. In
this fashion effective tutoring may take place.

CPP-tutor expert module: In order for CPP-Tutor to
provide intelligent feedback to the student the Expert
Module relies on a group of information: the problem
statement, the problem specification, student’s code, the
established student model, the C++ compilation and the
result from the C++ runtime engine. Based on this context,
some of this information will not be on hand. However,
the goal of this module is to carefully analyze all available
information so that appropriate feedback may be
generated for the student. This 13 accomplished by the
core component of the Expert Intent Recognition Module.

Expert intent recognition module: The purpose of the
Expert Intent Recogmtion (EIR) Module 1s to make sure
that the most plausible submission of code that the
student intended. As shown in Fig. 2, the EIR 1s invoked
when the standard C++ compiler fails. Assume that the
submitted student solution 1s called Soll and the existing
solution for the given problem is Sol2.

The EIR module performs pattern matching between
the two solutions (Sell and Sol2) to generate a
transformation function string and to calculate the edit
distance between the student’s solution and the actual
solution using a Dynamic Programming Algorithm (DPA).

The EIR module constructs a transformation mapping
function string (1e., T: Soll =» Sol2). T mvolves all
insertions, deletions, transpositions and character
changes that are required to transform Soll nto Sol2. The
cost for an insertion, deletion, transposition, or character
change 1s 1. The EIR meodule then constructs feasibly-
sound variations (i.e., modified Soll) of the student’s
solution and proceeds to compile and run them. For
example, let the student’s submitted solution (Soll) be:

“finclude<iostream.h>

void main(§

Inte,j=-5

while(j>=5){

¢ = %%t cout <<c<<endl;}}”

and the actual solution (Sol2) be:

(8D

Send student code
to C++ compiler
CH N\ Yes | Expert intent
compiler recognition module
fails l
No . .
Display appropriate
Execute feedbeck to student
student code |
Display appropriate
feedback to student

‘Was the
problem

Yes | Selectanew C+—
problem or exit

Fig. 2: Flow chart for CPP-tutor

“fhnclude<iostream.h>

void main(){

mt ¢,) = -5;

while(j< = 5){

¢ =7%*),Hcout <<c<<endl;}}”

The distance between Soll and Sol2 is 5 and
T="00000000004000000000¢
000000000]00

6000000000[}

400004710000

SE G000 00000000000000000000007,

where the symbols ¢, B, 8, 1 and { means: match,
msertion, case mismatch, replacement and deletion,
respectively. Furthermore the suggested modified student
solution as follows:

Soll ="#include<iostreamn.h>
void main([{

mnt ¢ =-3p

while(j< = 5){

¢ =7%*),Hcout <<c<<endl;}}”

The new Soll portray the pattern matching
procedure. The EIR module passes this information on to
the Expert module to determine the appropriate response
for the student.

1057

Inform. Technol J., 7 (7): 1055-1060, 2008

1. #include<iostream.h>

2. void maing {

3. Int ¢,j=-5

4. while(j>=5){

5. ¢: 9%, j+H; cout <<c<<endl; }}

CPP-Tutor: “Tt seemns something is missing in line 2. Tt might be ©)°
between *(* and *}’ Do you agree?”

Student: Yes

CPP-Tutor makes the correction and proceeds with rest of the code.

1. #include<iostream.h>

2. void main{) {

3. Int c,j=5

4. while(j>=5){

5. ¢: 9%, j+H; cout <<c<<endl; }}

CPP-Tutor: “I suppose that you need the keyword ‘int’ instead of “Int’. Is
that what you meant?”

Student: Yes

CPP-Tutor makes the correction and proceeds with rest of the code.

1. #include<iostream.h>

2. void main{) {

3. int ¢, =5

4. while(j>=5){

5. ¢: 9%, j+H; cout <<c<<endl; }}

CPP-Tutor: “It seems something is missing in line 3, It might be *;> Do
you agree?”

Student: Yes

CPP-Tutor makes the correction and proceeds with rest of the code.

1. #include<iostream.h>

2. void mainf) {

3. int ¢ j=-5;

4. while(j==5){

5. ci=44; j+; cout <<c<<lendl; }}

CPP-Tutor: “The symbol <>° found in line 4, It should be *<’ instead’.
Is that what y ou meant?”

Student: Yes

CPP-Tutor makes the correction and proceeds with rest of the code.

1. #include<iostream.h>

2. void main{) {

3. int ¢ j=-5;

4. while(j<=5){

5. ci=44; j+; cout <<c<<lendl; }}

CPP-Tutor: “ The symbol *= found in line 5, It should be *= instead’.
You are leaming C++ not Pascal Language. Is that what you meant?”
Student: Yes

Fig. 3: Dialogue between CPP-Tutor and Student

Before the EIR module makes any changes as
indicated in the T function string, the student 15 asked
specific questions for mtent clarification purposes. In this
fashion, only modifications that the student knows can be
made to the code. So, using the example in Fig. 1, the
following dialogue between CPP-Tutor and the student
would come up as in Fig. 3:

The tutoring process 1s dynamic. The student may at
any time disagree with CPP-Tutor suggestions and modify
the source code. After the modification of the user,
tutoring process begins again.

CPP-tutor feedback module: The effectiveness of any
Intelligent Tutoring System depends heavily upon its
feedback timing and style. Tining refers to when the
student 1s given a response to the solution. When the
feedback is presented to the student should be governed
by what the student knows. For example, in the beginning
of programming tutoring, the tutor may wish to correct all
of the syntax errors the student i1s making as these
mistakes are made. As the student progresses and learns
more, the feedback about the syntax of the language
would be annoying. Instead, the system should present
immediate feedback for the higher level concepts that the
student is attempting to learn and delay the feedback for
the lower level concepts. Tutors are better than teachers
mn this respect in that they can provide a student with
timely feedback better than most teachers (Mark and
Greer, 1995).

CPP-tutor user interface: The mterface for computer-
based programming tutoring system 1s a very important
factor that we gave it a careful consideration during the
design of CPP-Tutor (Koedinger, 2001). The user interface
15 based on a presentation format implemented in many
popular Integrated Development Environments used by
professional programmer (AbuNaser, 2008; Conlan et al.,
2002). Upon connecting to CPP-Tutor website, the
student’s browser displays the working enviromment for
CPP-Tutor. An appropriate skill-level problem 1s selected
or the problem that last attempted is presented to the
student. At any time the student can request a new
problem by pressing New problem button. The student
types n his solution in the Solution window. Once the
student finish answering a problem, he can press the
Compile button.

After pressing the Compile button, the student code
1s sent to the C++ compiler. If the student solution pass
the compile stage, the CH++ engine runs the student code
and the output is displayed in the output window,
however, if the compile stage fails, a pattern matching
procedure 1s invoked to calculate the edit distance
between the student solution and the actual solution, a
modified solution of the student code is suggested and
mnformation gathered is sent to the expert module for
proper feedback.

When the student become more experienced
programmer, he or she can skip the tutorial on a specific
problem by pressing the run button instead of compile
button. The result of the C++ engine 1s displayed in
output window directly.

The student, at any time, may explicitly request from
CPP-Tutor to view the selution, Exit from the current
problem and select a new one and view his performance

1038

Iform. Techwol J, 7 (7): 10551060, 2005

<[OPP-Tefsr g Inieligen] Tulnrmg Sysiem

CFP-Tulor
An Intelligend Tularing Syslem lor
Student Leaming to Program in C++
Frobilen 1!E.<L||]Jhr.ln Howa Problan |
Frobilem
Wnie & program in T+ which fod aoed print the
cubic vakas For eech imbeger betweer -5 and +3
Stmdent Solites
#mrhude <ietresm b L
syl msr
[t . =%
whilef j»=5) |
P
cid Corpdn | Aun Eghi Sial Em
Cruitpast Wil ey
FP.-Tulnr, "It seams 1":mli‘.::! £1 NS ST i ket z
It ereeghit e ') b ' and ')’ Do on agreey
Stodest on

Fig 4: CPP-tutor user itterface

based o statisics including problems attempted
problems solved manber of attempts on a problem and
problem difficudty, The CPP-Tutor user interface is shown
inFig 4.

CONCLUSIONS

In this stady, we have presented recent
developer ents related to the C4++ Intelligent Titoring
System, which is based on sound theories, pattern
recognition tecktucues atd error-correction strategies
The utimate goal of the pattern recogniti on teched ques, in
CPP-Tutor is to understand the “irdertion’ of the stadent
by carefuly analyzing the studert’s code and to
cotntigcate this to the Expert modid e to effectively tutor
the student through C++ programming problems. This
reseatch is sigrificant since it has the potential to be
applied to mater programming cowrses at the University
lewel. Furthermore, O+ iz an extremely popular
first programming langnage everywhere.

FUTURE WORK

CPP-Tutor has not yet been fully evdusted as to its
effectiveness as a toring tool. A Hdl evaluation is
platwed for early 2008, to be taken with an introductory
C+ programming class. Although supporting the entive
CH+ dotman iz beyond the immediate scope of this

project, the system can be incrementally impeoved
through developing more constrants, therefore extending
the doman coverage. In addition the problem set can
alzo be increased, by either working inside a template to
develop more complex problems or developing new
templates that foous on different problem goals.

REFERENCES

AbuMaser, 358, and O Sulisel, 2000. The effect of uaing
coth puter aided instruction on performance of 10th
grade Woogy in Gaza I Coll. Edue,, 4 0.37.

Abu Naser, 3.3, 2001, & compardive study between
atimated ittelligent ttoring systems AITE and
video-based intelligent totoring systems VITS
21-Agyza Tndv. T, 5:72-96.

&b Mager, 3.5, 2006, Tntelligert Tutoring System (TTH)
for teaching database to sophomore studentsinGaza
atud its effect on their petformance. Inform. Technol.
I, 5: 916922

AbuMager, 335, 2008, Deweloping visalization tool for
teaching Al searching algoritlams. Inform. Technol.
I, 7 350.355

Alexandresou, A, 2001, Modern C++ Design: Generic
Programming and Design Patterns Applied (C++ In-
Depth Series). 1st Edn. Addison Wesey, New ¥ ok

Anderson, IR and E. Skwarecki, 1986, The atomated
ttoring of introductory computer programming
Commun ACK, 29 B42-849

Andersor, TR, AT Cothett, KR Koedinger and
E. Pelletier, 1995, Cognitive tutors: Lessons learned.
I. LeatningJei, 4 167-207.

Brusilovalor, P E. Bchware and G Webher, 1996 ELI--
ART: Anintelli gent tutoring system on World Wi de
Web, ELM--ART: An intelligent tutoring system on
World "Wide "Web, Lecture Motes Compat. Jei,
10264; 261-269.

Cordan, O, C. Hockemeyer, V. Wade, D, Albert and
LI Gargan, 2002, An architectwre for integrating
adaptive kypermedia service with cpen learning
etrvirotretts. Proceedings of ED-MEDIA 2002,
Vol 1 of Wotld Corference on Educationa
Llutitvedia, June 2429, Hypermedia and
Telecor unications, pp: 344-350.

Graesser, 200, and NI Person, 2001, Teaching tactics
and didog in auto tutor. Int Adificial Intel. Educ,
12:12-23.

Hong T, 2004, Guided progeam ming and auptom ated error
atalysis in an irdelligent prolog tutor. Int T Humw.
Compng, 3tad, 61 505-534,

1059

Inform. Technol J., 7 (7): 1055-1060, 2008

Johnson, W.L. and S.E. Proust, 1985. Knowledge-based
program understanding. TEEE Trans. Software Eng.,
11: 267-275.

Koedinger, K.R., 2001. Cognitive Tutors. In. Smart
Machines in FEducation, Forbus, K.D. and
P.J. Feltovich (Eds.). MIT Press, Cambridge, MA,
pp: 145-167.

Kumar, AN., 2002. Model-based reasoning for domain
modeling in a web-based intelligent tutoring system
to help students learn to debug CH++ programs. Intel.
Tutoring Syst., 2363: 792-801.

Mark, M. and JE. Greer, 1995. The VCR tutor:
Effective instruction for device operation. J. Learn
Sci., 4: 209-246.

Qiu, L. and C. Riesbeck, 2004. An incremental model for
developing computer-based learming environments
for problem-based learning. Proceedings of TEEE
International Conference on Advance Learning
Technologies, 22 Aug, pp: 908-916.

Shute, V.J. and R. Glaser, 1990. A large-scale evaluation of
an intelligent discovery world: Smithtown. Interactive
Learn. Environ., 1: 51-57.

Silverman, B.G., 1992. Survey of expert critiquirg systems:
Practical and theoretical frontiers. Commun. ACM,
35:106-127.

Soloway, E., E. Rubin, B. Woolf, W.I.. Johnson and
I. Bonar, 1983. Meno ii: An ai-based programming
tutor. J. Computer-Based Instruct., 10: 20-34.

Song, 1.5, S.H. Hahn, K.Y Tak and J.H. Kim, 1997. An
intelligent tutoring system for introductory C
language course. Comput. Educ., 28: 93-102.

Sykes, ER. and F. Franek, 2003. A prototype for an
mtelligent tutoring system for students learmung to
program in Java. Proceedings of the TASTED
International on Computers and
Advanced Technology in Education, 30 June- 2 July,
Rhodes, Greece, pp: 78-83.

Weber, G. and A. Mollenberg, 1995, A. ELM-
programming-environment: A tutoring system for lisp
begmners. In: Cogmtion and Computer Programming,
Ablex (Ed.). Norwood, New Jersey, pp: 373-408.

Weber, G. and M. Specht, 1997. User modeling and
adaptive navigation support in www based tutoring
systems. In: 6th International Conference on User
Modeling, June 1997, Sardia, Italy, pp: 289-300.

Woolf, B.P., I. Beck, C. Eliot and M. Stern, 2001. Growth
and Maturity of Intelligent Tutoring Systems. Tn:
Smart Machines i Educatiorn, Forbus, K.D. and
P.J. Feltovich (Eds.). MIT Press, Cambridge, UK.,
pp: 100-144.

Conference

1060

	ITJ.pdf
	Page 1

