A Modified Histogram Shifting
Based Reversible Data Hiding Scheme for High Quality Images

1Wien Hong, 2Tung-Shou Chen, 1Kai-Yung Lin and 1Wen-Chin Chiang
1Department of Information Management, Yu Da University, Miaoli, Taiwan
2National Taichung Institute of Technology, Graduate School of Computer Science and Information Technology, Taichung, Taiwan

Abstract: The histogram-shifting method is a well-known method for reversible data hiding. To reach the goal of data hiding, this method shifts all pixel values between peak and zero points to leave vacant spaces for data hiding. However, this method has no distortion-capacity control mechanism because the distortions are almost equally the same for large or small payload. In this study, we proposed a mechanism to control the image quality, for which small payload only needs to shift fewer pixels. Therefore, the proposed method produces better stego image quality and performs slightly efficient, especially for small payload. In comparison to the traditional histogram-shifting method, the proposed method significantly improves the stego image quality and computational cost without sacrificing the embedding capacity.

Key words: Reversible, data hiding, embedding capacity

INTRODUCTION

Data hiding is a technique that embeds secret data into digital media so that the existence of the embedded data is unnoticeable (Petitcolas et al., 1999). Data hiding can be applied to protect copyrights, to authenticate digital contents and to communicate secretly (Lin and Tsai, 2004; Lin and Chen, 2000; Wu and Shih, 2006). In general, the digital media for which data are embedded are called carriers or cover media. Various media can be used for data hiding, for example, text files, audios, videos and images. Nowadays the most common carriers used for data hiding are digital images because they often spread over the Internet. Moreover, the rich redundancies provided by digital images are very suitable for data embedding because some redundancies can be easily replaced by the data bits. To conceal data into a cover image, pixel values are modified. The modified image with data embedded is called a stego image. In general, pixel values of cover images are changed so that data can be concealed; therefore, image distortion occurs. Usually, the distortion due to data hiding is not reversible. This means the original image cannot be recovered to its original state, even after the hidden data is extracted (Mielikainen, 2006). On the contrary, a reversible data hiding technique has the capability to restore the original image (Celik et al., 2005; Hong et al., 2008, 2009). Some times, it is very important to have the original image. For example, a misreading of an x-ray picture may cause misdiagnosis of a patient.

Techniques used in reversible data hiding can roughly be categorized into two types; namely, the difference-expansion technique proposed by Tian (2003) and the histogram-shifting technique proposed by Ni et al. (2006). In Tian’s (2003) studies, the differences of pixel pairs are expanded and message bits are embedded in the LSBs of the expanded values. In Tian’s (2003) study, one data bit can be concealed into two pixels; therefore, the maximum bit-rate is 0.5 bpp. However, a relatively large amount of distortion could be introduced due to the pixel difference is doubled. Therefore, his method work is not suitable for applications where high image quality is demanded. Several variants of Tian’s work can be seen in Alattar (2004), Thodi and Rodriguez (2007). In Ni et al. (2006) study, data bits are embedded by shifting the histogram bins. During embedding, pixel values are plus or minus one at most, therefore, a high stego image quality could be achieved. However, the payload is restricted by the distribution of pixel values. In general, as an image histogram has a greater peak height, the image should have a greater payload.

The histogram-shifting technique, proposed by Ni et al. (2006) embeds data by shifting the histogram bins. This method first constructs an image histogram of a cover image to obtain a pair of peak and zero points. Then, data are embedded by shifting the histogram bins.

Corresponding Author: Dr. Wien Hong, Department of Information Management, Yu Da University, Miaoli, 361, Taiwan
Tel: 886-37-651188/6129 Fax: 886-37-652143
Due to its simplicity, it has become one of the best popular techniques in the field of reversible data hiding. The detailed embedding procedures are listed below:

- **Input**: Original 8-bit grayscale image I with M×N pixels and the secret data S
- **Output**: Stego image I₀, the peak point a, the minimum point b, length of secret data |S| and the location map L
- **Step 1**: Scan the cover image I and constructed its histogram \(H_I(x), x \in [0, 255] \). In the histogram, the gray value for which the histogram is highest is denoted the peak point a and the gray value for which the histogram is lowest is denoted the minimum point b. If \(H_I(b) = 0 \), then b is called a zero point. For simplicity, we assume \(a < b \)
- **Step 2**: Scan the image once again and record the positions of those pixels value equal to b and place them into location map L. After that, shift the histogram \(H_I(x), x \in [0, 255] \) to the right by 1 unit to vacate the histogram bin at \(a+1 \)
- **Step 3**: Extract a data bit s from secret data S. Scan the image once more. If the scanned pixel value is a and the data bit to be embedded is 1, then set the pixel value to \(a+1 \). If the data bit to be embedded is 0, no change has to be done on the scanned pixel

Data embedding can be done by repeating step 3 until S is completely embedded. The outputs of Ni et al. (2006) study are a stego image I₀, a peak point a, a minimum point b, the location map L, and the length of the secret data |S|. These outputs are then served as a key and transmitted to the receiver via a secure channel. When receivers have both key and the stego image I₀, they can use the following procedures to find the secret data and the original image. The procedures of data extraction and original image recovery are given below:

- **Input**: Stego image I₀, the peak point a, the minimum point b, the location map L and the length of the secret data |S|
- **Output**: Original 8-bit grayscale image I and the secret data S
- **Step 1**: Scanned the image in the same order as in the embedding phase. If the scanned value is a, then a bit 0 is extracted. If the scanned value is a+1, then a bit 1 is extracted
- **Step 2**: Scan the image again and shift \(H_I(x), x \in [0, 255] \) to the left by one unit
- **Step 3**: Set the value of those pixels recorded in L to b

The embedding and extraction procedures use one pair of peak and minimum point to perform data hiding. However, Ni et al. (2006) method can be generalized to two pairs of peak and zero. Note that in the embedding phase, the cover image is scanned three times; therefore, the computational cost of Ni et al. (2006) method is \(O(3M×N) \).

PROPOSED METHOD

Although, a higher stego image quality can be obtained in Ni et al. (2006) method, it has no mechanism to control the capacity-distortion relationship; namely, equally distortion will occurs for large or small payload. This is because almost equally amount of pixels has to be shifted in order to conceal data, no matter the size of the payload.

Embedding: Here, we proposed a modified version of Ni et al. (2006) method to solve the major drawback of their scheme. Instead of shifting all the pixels between the peak and minimum point before embedding, we combine the shifting and embedding processes together so that just amount of pixels is shifted for a given payload. Therefore, no extra amount of pixels will be shifted compare to Ni et al. (2006) method. The detailed embedding procedure is given below:

- **Input**: Original 8-bit grayscale image I with M×N pixels and the secret data S
- **Output**: Stego image I₀, the peak point a, the minimum point b, length of secret data |S| and the location map L
- **Step 1**: Scan the cover image I and constructed its histogram \(H_I(x), x \in [0, 255] \). In the histogram, obtain the peak point a and the minimum point b. Without loss the generality, we assume \(a < b \)
- **Step 2**: Set \(k = 0 \). The variable k is used to indicate the amount of embedded data bits
- **Step 3**: Scan the cover image I again. If the scanned pixel value is equal to a, a data bit s is extracted from S, set \(k = k+1 \) and go to step 4 to embed the data bit s; otherwise, go to step 5
- **Step 4**: If the data bit s is 1, then the value of scanned pixel is set to \(a+1 \); otherwise no change has to be made for this pixel. Go to step 3 to continue the embedding processes
- **Step 5**: If the scanned pixel value is within the range \((a, b)\), then the pixel value is add by one. Record the position of pixels whose pixel values is equal to b
Extraction and restoration: The extraction and restoration procedures are similar to that of Ni et al. (2006) scheme. The detailed procedure is listed below:

- **Input:** Stego image I, the peak point a, the minimum point b, the location map L and the length of the secret data |S|
- **Output:** Original 8-bit grayscale image I and the secret data S
- **Step 1:** Set k = 0
- **Step 2:** Scanned the image in the same order as in the embedding phase. If the scanned value is a, let k = k+1 and a bit 0 is extracted. If the scanned value is a+1, let k = a+1 and a bit 1 is extracted. If the scanned value is within the range (a,b) then subtract one from the scanned pixel values. If the position of the scanned pixel is recorded in L, then the value of scanned pixel is set to b
- **Step 3:** Repeat step 2 until k = |S|

The proposed method has combined both pixel-shifting and data-embedding in a single loop. By doing this, no extra work is required on processing small amount of payload. Therefore, a better quality for stego image and lower computational cost could be achieved.

RESULTS AND DISCUSSION

Here, we compare Ni et al. (2006) method to ours to demonstrate the applicability and effectiveness of the proposed method. Six 8-bit grayscale images, Lena, Baboon, Boat, Girl, Sailboat and Peppers sized 512×512, are selected as test images, as shown in Fig. 1a-f. The secret data is generated by a Pseudo Random Number Generator (PRNG). We use Peak Signal-to-Noise Ratio (PSNR) for evaluating the quality of stego image. The definition of PSNR is given by:

\[
\text{PSNR} = 10 \times \log_{10} \frac{255^2}{\text{MSE}}
\]

where, MSE is the mean square error between the original image and the stego image. The definition of MSE is given by:

\[
\text{MSE} = \frac{1}{M \times N} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} (x_{ij} - x'_{ij})^2
\]

where, \(x_{ij} \) and \(x'_{ij} \) are the pixel values of the original image and the stego image, respectively. A higher PSNR value means that the quality of stego image is closer to the original image.

In Ni et al. (2006) histogram-shiftling method, when two pairs of peak and minimum points are used to embed data, all pixels are plus or minus one grayscale unit at most, resulting the MSE between the original image and the stego image is close to 1. Therefore, the lower bound of PSNR is given by:

\[
\text{PSNR} \geq 10 \times \log_{10} \frac{225^2}{25} = 48.13 \text{ db}
\]

![Fig. 1: Six 8-bit grayscale image as test image. (a) Lena, (b) baboon, (c) boat, (d) girl, (c) sailboat and (f) peppers](image-url)
The maximum payload of Ni et al. (2006) method is determined by the most frequent pixel values occur in a cover image. To demonstrate the undesirable pixel shifting in Ni et al. (2006) method, we define the embedding rate as follows:

\[E_r = \frac{\text{No. of embedded bits}}{\text{Maximum payload}} \]

Therefore, a \(E_r = 0.5 \) indicates that there are 50% of embeddable space has been embedded with data bits. Table 1 shows a comparison between the numbers shifted pixels under various embedding rate for the proposed method and Ni et al. (2006) method. Note that the more the number of shifted pixels, the lower the stego image quality is. As can be seen from Table 1, the number of shifted pixels is roughly the same as in Ni et al. (2006) method, regardless the embedding rates. However, the proposed method significantly reduces the number of shifted pixels at low embedding rate and therefore, a higher stego image quality can be obtained.

Figure 2 shows the comparison results of stego image quality vs. payload for the proposed method and Ni et al. (2006) method. These figures show that with fewer payloads, the proposed method significantly improves the stego image quality over Ni et al. (2006) method. When the payloads approach the maximum embedding capacity, the PSNR of the proposed method is close to the theoretical value, 48.13 dB. Moreover, since
the number of shifted pixels is significantly reduced under low embedding rate, the proposed method provides stronger security against statistical analysis than Ni et al. (2006) method. Besides, although the PSNR at maximum embedding capacity of the proposed method is roughly the same as that of Ni et al. (2006) method, our method still have a better computation efficiency. In Ni et al. (2006) study, the time complexity is O(3M×N) whereas ours is O(2M×N). This is because our method combines data-embedding and pixel-shifting in a single loop; however, Ni et al. (2006) method has to evacuate a histogram bin in advance and data embedding can then be performed. Therefore, the whole cover image needs an extra scan in Ni et al. (2006) study, resulting a slightly degrade in the embedding performance.

The purpose of data hiding is to transmit secret information under the cover of digital media to elude the attention of someone who is interested in it (Hong et al., 2009). Generally, a data hiding method should have the capability of distortion-capacity control mechanism, i.e., smaller payload only distort the cover image smaller (Thodi and Rodriguez, 2007). The proposed method meets this requirement. On the contrary, the undesirable distortion may occur in Ni et al. (2006) method. Besides, a good data hiding method should distort the cover image as small as possible to prevent the embedding detectable (Zhang and Wang, 2006). In the proposed method, we reduce the embedding distortion significantly at small payload. Thus, the proposed method supports the essential requirement of data hiding and provides a more secure and flexible data hiding method than that of Ni et al. (2006) method.

CONCLUSION

In this study, we proposed a modified reversible data hiding method based on Ni et al. (2006) histogram-shifting method. A distortion control mechanism is introduced in the proposed method to significantly reduce the number of modified pixels, because just amount of pixels is shifted for a given payload. Besides, the proposed method slightly improves the computational cost due to the evacuation of histogram bin is no longer necessary. The experimental results show that the proposed method has better PSNR than that of Ni et al. (2006) method, especially for low embedding rate.

REFERENCES