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Abstract: Finding clusters m a high dimensional data space 1s challenging because a high dimensional data
space has hundreds of attributes and hundreds of data tuples and the average density of data points is very
low. The distance functions used by many conventional algorithms fail in this scenario. Clustering relies on
computing the distance between objects and thus, the complexity of the similarity models has a severe influence
on the efficiency of the clustering algorithms. Especially for density-based clustering, range queries must be
supported efficiently to reduce the runtime of clustering. The density-based clustering is also influenced by
the density divergence problem that affects the accuracy of clustering. If clusters do not exist in the original
high dimensional data space, it may be possible that clusters exist in some subspaces of the origmal data space.
Subspace clustering algorithms localize the search for relevant dimensions allowing them to find clusters that
exist in multiple, possibly overlapping subspaces. Subspace clustering algorithms identifies such subspace
clusters. But for clustering based on relative region densities in the subspaces, density based subspace
clustering algorithms are applied where the clusters are regarded as regions whose densities are relatively lngh
as compared to the region densities in a subspace. This study presents a review of various subspaces based

clustering algorithms and density based clustering algorithms with their efficiencies on different data sets.

Key words: Feature selection, Subspace clustering, density based clustering, ligh dimensional data

INTRODUCTION

Clustering is one of the major data mining tasks and
aims at grouping the data objects into meaningful classes
(clusters) such that the similarity of objects within
clusters is maximized and the similarity of objects from
different clusters is mimmized (Kaufman and Rousseeuw,
1990). Cluster analysis is one of the main tools for
exploring the underlying structure of a data set. Clustering
finds important applications in a wide variety of
disciplines including remote sensing, pattern recognition,
umage processing and computer vision (Han and Kamber,
2001). The prime objective of a clustering techmque 1s to
partition a given data set consisting of N-dimensional
points or vectors into a fixed number of T. clusters.
Traditionally, clustering 1s considered to be a process that
partitions the data poits into mutually exclusive groups
or clusters such that data points in the same cluster are
more similar to each other than to data points in other
clusters (Arora et al., 2009). The dissimilarity between a
pair of data points 13 usually measured by a distance
metric defined on the differences between the values of
their attributes (dimensions). Traditional clustering
algorithms (Macqueen, 1967; Cutting et al., 1992; Defays,
1977, Frank and Roberto, 1994; Hartigan, 1975; Amir and

Lipika, 2007; Sibson, 1973; Ramjan and Khalil, 2007) use all
the attributes in the data to compute the distances. The
curse of dimensionality makes the clustering task very
difficult when the data space contains a large number of
attributes. The large number of attributes makes it
computationally infeasible to use all the attributes to find
the clusters. Besides, not all the attributes are useful for
the clustering task. The irrelevant attributes cause the
average density for a cluster in any neighborhood of the
data space to be low which makes it impossible to find
any meaningful clusters using the traditional clustering
algorithms in full-dimensional space.

In order to overcome the limitations of traditional
clustering algorithms, some attempts have been made to
use genetic algorithms for clustering data sets. Tseng and
Yang (2001) proposed a genetic algorithm based approach
for the clustering problem. Bandyopadhyay and Maulik
(2002) applied the variable string length genetic algorithm
with the real encoding of the coordinates of the cluster
centers in the chromosome to the clustering problem.
Bandyopadhyay and Saha (2007) proposed an
evolutionary clustering technique that uses a new point
symmetry-based distance measure. Vijendra et al. (2010)
proposed a Genetic Clustering Algorithim (GCA) that finds
a globally optimal partition of a given data sets into a
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specified number of clusters. A genetic algorithm with
chromosome reorganize (GACR) is introduced by
Singh et al. (2011) to enhance the performance of
clustering. In GACR, the degeneracy of chromosome 1s
effectively removed which makes the evolution process
converge fast.

A common approach to cope with the curse of
dimensionality problem for mining tasks 1s to reduce the
data dimensionality by using the techniques of feature
transformation and feature selection. The dimensionality
reduction (Roweis and Saul, 2000, Gao et al, 2009)
focuses on the problem of reducing the number of
features under assumption that not all feature dimensions,
in the original space, are relevant to the given learning
tasks. Dimensionality reduction provides an effective way
to reduce the featwre size and improves the learning
efficiency and effectiveness. But different groups of
points may be clustered in different subspaces; a
significant amount of research has been elaborated
upon  subspace clustermg (Chu et al, 2009
Singh et al, 2010; Chen et al, 2011) which aims at
discovering clusters embedded in any subspace of the
original feature space. Subspace clustering therefore aims
at detecting any possible attribute
combination.

Density-based approaches are very popular to
determine clusters in subspace. As the number of
subspace projections 13 exponentially with the mumber of
dimensions, subspace clustering methods have a
tremendous need for efficient density-based methods.
Density-based clustering algorithms, search for dense
subspaces. A dense subspace is defined by a radiws of
maximum distance from a central point and it has to
contain many objects according to a threshold criterion.
Density-based clustering (Ester et al., 1996, Hinneburg
and Keim, 1998; Friedman and Meulman, 2004,
Yousria et al., 2009; Singh and Trikha, 2011) defines
clusters as regions with a high density of objects
separated by regions with low density. The main process
1s to explore these two region types. A common technique
is to partition the data set into non overlapping cells. The
cells with a high density of data points are supposed to
be cluster centers whereas the boundaries between
clusters fall mto the regions with low density.

There are a number of excellent reviews of clustering
technicues available. Jain et al. (1999) published a review
on data clustering. Kolatch (2001) presented a swvey of
clustering algorithms for spatial databases and a survey
of clustering data mining technique. Garg and Jain (2006)
performed a study on clustering algorithms based on
partition and variation of k-means algorithm. One of
comprehensive review was published by Parsons et al.

clusters 1n

(2004) on subspace clustering for high dimensional data.
Xu and Wunsch (2005) also presented a survey of
clustering algorithms. Recently, Sun et «l. (2008)
published another survey on clustering algorithms
research. Velmuwugan and Santhanam (2011) explored the
behavior of some of the partition based clustering
algorithms and their basic approaches with experimental
results n their survey of partition based clustering
algorithms in data mining: an experimental approach.

PROBLEM WITH CLUSTERING HIGH
DIMENSIONALITY

Clustering high dimensional data is usually a difficult
task. In fact, most traditional clustering algorithms tend to
break down when applied to lugh dimensional feature
spaces. Another difficulty we have to face when dealing
with clustering is the dimensionality of data. The objects
could be described by lundreds of attributes and these
results in high dimensional datasets. In clustering, the
overwhelming problem of high dimensionality presents a
dual aspect. First, the presence of irrelevant attributes
eliminates any hope on clustering tendency, because
such featwres cause the algorithm search for clusters
where there are no ones. This also happens with low
dimensional data, but the likelihood of presence of
urelevant featiwes and their mumber grow with dimension.
The second problem i1s the so called Curse of
dimensionality. For clustering this means that cluster do
not show across all attributes as they are hidden by
urelevant attributes or blurred by noise. Clustering
methods are typically either based on distances
(like partitioming and hierarchical clustering) or on
densities (like density-based methods). Beyer et al. (1999)
studied the effects of high dimensions on the nearest
neighbor d_;, (o) and the farthest neighbor d, (o) of an
object o in detail. They have proven the following
equation for different distributions:

ez limy, . P (dmax (o)<(1 + €)dmin (o)) =1 (1)

This statement formalizes that with growing
dimensionalities (dim) the distance to the nearest
neighbor is nearly equal to the distance to the farthest
neighbor (distances become more and more similar).
Consequently, clustering methods based on distance
fimctions have problems to extract meammngful patterns in
high dimensional spaces as they either cluster only one
object (the nearest neighbor) or nearly the complete data
set (the farthest neighbor). Figure 1 shows that clusters
are embedded in different subspaces of high-dimensional
data sets.
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Fig. 1: (a) Subspace clusters and (b) Hierarchies of subspace clusters

Densities also suffer from the curse of dimensionality.
Sibson (1973) described an effect of higher dimensions on
density distributions: 99% of the mass of a ten-
dimensional normal distribution is at points whose
distance from the origin is greater than 1.6. This effect 1s
directly opposite in lower dimensional spaces: 90% of the
objects have a distance of less than 1:6 from the origin
regarding a one-dimensional distribution. Density-based
clustering methods hence have problems to determine the
density of a region as the objects are scattered over the
data space.

There are two traditional ways to tackle the problem
of high dimensionality. The first one consists in a variety
of techmques to perform a dumensionality reduction
before the clustering process, so we can work on a
dataset ideally equivalent to the original one but with a
lower dimensionality (and sometimes with a lower level of
noise). The second way 15 known as subspace
clustering and density based clustering which is a special
class of clustering algorithms that try to circumvent high
dimensionality by building clusters in appropriate
subspaces of the original feature space.

DIMENSTIONALITY REDUCTION

Techmques for reduction of the dumensionality
(Schott, 1993; Roweis and Saul, 2000, Gao et al., 2009) in
datasets could be divided in three classes:
extraction (also known as feature transformation), feature

feature

selection and, more recently, feature clustering. Feature
extraction consists in applying a mapping from the
multidimensional space to a space of fewer dimensions.
This means that the original feature space is transformed
by creating new features from combinations of the original
ones. Feature selection methods, indeed, select only the
most relevant of the dimensions from a dataset to reveal
groups of objects that are similar on only a subset of their
attributes. Feature clustering s a more recent class of

methods for the reduction of dimensicnality. It consists in
performing the clustering of the feature set on a per-
objects basis, i.e., it is a clustering of the transposed data
matrix.

Feature extraction: Feature extraction is commonly used
on high dimensional datasets. These methods include
techniques such as PCA (Bishop, 2006), Singular Value
Decomposition (SVD) or Sammon’s non linear mapping
(Sammorn, 1969) which 13 often used in data miming and
image analysis. However, PCA (Jolliffe, 2002) is a linear
technique, ie., it only takes
dependences between variables. Recently, many non-
linear techniques have been proposed such as Kernel
PCA (Scholkopfetal., 1998) non-linear PCA (Girard, 2000)
and neural networks based techniques (Roweis and Saul,
2000) recently investigate the situation when the data are
not drawn from Gaussian distributions and use Laplacian
distribution (or L1 distribution) a heavy-tailed
distribution, to obtain a robust multivariate L1 PCA (L1-
PCA) method (Gao et al., 2009) which is less sensitive to
outliers. Feature extraction 1s often a preprocessing step,
allowing the clustering algorithm to use just a few of the
newly created features. A few clustering methods have
incorporated the use of such transformations to identify
important features and iteratively improve their clustering.
While often very useful, these techniques do not actually
remove any of the original attributes from consideration.
Thus, information from 1relevant dimensions 1s
preserved, making these techmques ineffective at
revealing clusters when there are large numbers of
irrelevant attributes that mask the clusters with a huge
amount of noise.

into account linear

Feature selection: Feature selection attempts to discover
the attributes of a dataset that are most relevant to the
data mimng task at hand. It is a commonly used and
powerful techmique for reducing the dimensionality of a
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problem to more manageable levels. Feature selection
mvolves searching through various feature subsets and
evaluating each of these subsets using some criterion
(Guyon and Elisseeft, 2003). The evaluation criteria follow
one of two basic models, the wrapper model (Dunne et al.,
2002) and the filter model. The most popular search
strategies are greedy sequential searches through the
feature space, either forward or backward. Dhillon et al.
(2003) proposed to combine global feature selection and
model-based clustering. A recent approach on feature
selection and model-based clustering is given by Raftery
and Dean (2006). Frequently used filter methods include
t-test (Hua et al., 2008), chi-square test (Jin et af., 2006),
Wilcox on Mann-Whitney test (Liao et af., 2007), mutual
mformation (Peng et al., 2005), Pearson correlation
coefficients (Biesiada and Duch, 2008) and principal
component analysis. Zhu et @l. (2010) conducted a survey
on feature selection.

Algorithms based on the filter model examine ntrinsic
properties of the data to evaluate the feature subset prior
to data mining. Much effort in feature selection has been
directed at supervised learning. Feature selection methods
(Das and Liu, 2000) for supervised learning rely on the
evaluation criteria like accuracy and/or on class labels. As
we already know, in the unsupervised case we have
neither class labels nor uwmiversally accepted evaluation
criteria, but there are a number of methods that
successfully adapt feature selection to clustering.
However, while quite successful on a lot of datasets,
feature selection algorithms have difficulty when clusters
are found in different subspaces.

Feature clustering: We find early approaches of the
feature mimng applications
(Pereira et al., 1993), since this application domain suffers
the curse of dimensionality very much. The feature
clustering process is more effective than feature selection

clustering 1 text

methods. At the same time, featire clustering avoids also
one of the main drawbacks of the feature extraction
methods: the amplification of noise due to the extraction
of new features as combination of other features. In fact,
in opposition to feature selection, feature clustering do
not throw away any feature, but perform a clustering on
the feature set and therefore it ideally keeps most relevant
portion of information about all features. Furthermore,
unlike feature extraction methods, featwe clustering
performs also a reduction of noise since a clustering
algorithm can be also viewed as a compression algorithm.
Dhillon et al. (2003), the authors achieve very good
results exploiting an mformation theoretic framework to
perform the feature clustering; their algorithm has good

performance minimizing the intra-cluster divergence and
simultaneously maximizing the inter-cluster divergence.

SUBSPACE BASED CLUSTERING

A subspace clustering problem 15 a search algorithm
for interesting subsets of objects and theiwr associated
subsets of attributes. Since the first subspace clustering
algorithm for data mining was proposed by Agrawal et al.
(1998), many different algorithms have been presented by
Yang et al. (2002), Zhou et al. (2007), Singh (2010) and
Deng et al. (2010). All these algorithms can be classified
into two categories: partition based approaches and grid
based approaches (or density-based approaches).

Partition-based subspace clustering: Partition based
algorithms partition the set of objects mte mutually
exclusive groups. Each group along with the subset of
dimensions where this group of objects shows the
greatest similarity is reported as a subspace cluster.
Similar to the k-means method, most algorithms in this
category define an objective function to be minimized
during the search. The major difference between these
methods and the k-means algorithm is that here the
objective functions are related to the subspaces where
each cluster resides in.

CLIQUE (Agrawal et al., 1998) was one of the first
algorithms proposed that attempted to find clusters within
subspaces of the dataset. As described above, the
algorithm combines density and grid based clustering and
uses an APRIORI style techmque to find cluster able
subspaces. Once the dense subspaces are found they are
sorted by coverage where coverage i1s defined as the
fraction of the dataset covered by the dense umits mn the
subspace. The subspaces with the greatest coverage are
kept and the rest are pruned. The algorithm then finds
adjacent dense grid units in each of the selected
subspaces using a depth first search. Clusters are formed
by combimning these umts using a greedy growth scheme.
The algorithm starts with an arbitrary dense unit and
greedily grows a maximal region in each dimension until
the union of all the regions covers the entire cluster.
Redundant regions are removed by a repeated procedure
where smallest redundant regions are discarded until no
further maximal region can be removed. The hyper-
rectangular clusters are then defined by a Disjunctive
Normal Form (DNF) expression. CLIQUE is able to find
many types and shapes of clusters.

SUBCLU (density-connected SUBspace CTL Ustering )
(Kailing et al., 2004) overcomes the limitations of grid-
based approaches like the dependence on the positioning
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of the grids. Instead of using grids the DBSCAN
(Ester et al., 1996) cluster model of density-commected
sets is used. SUBCLU is based on a bottom-up, greedy
algorithm to detect the density-connected clusters n all
subspaces of high-dimensional data. The algorithm starts
with generating all 1-dimensional clusters w.r.t. the mput
parameters € and p by applying DBSCAN to each 1-
dimensional subspace. Then, for each k-dimensional
cluster 1t has to be checked iteratively if 1t is still existent
in one ore more (k+1)-dimensional subspaces. For this
purpose, all pairs of k-dimensional cluster having (k+1)
attributes in common are joined together to generate
(k+1)-dimensional candidate subspaces. In the last step of
the iteration the
generated by applying DBSCAN to each cluster of one

(k+1)-dimensional clusters are

k-dimensional subspace of each (k+1)-dimensional
candidate subspace. These steps are recursively executed
as long as the set of k-dimensional subspaces contaiung
clusters 1s not empty. Compared to the grid-based
approaches SUBCLTT achieves a better clustering quality
but requires a higher runtime.

PROCLUS (Aggarwal et al., 1999), a typical partition-
based subspace clustering algorithm, searches for a
partition of the dataset into clusters together with the set
of dimensions on which each cluster is correlated.
PROCLUS 1s a vanation of the k-medoid algorithm and the
mumber of clusters k and the average number of
dimensions of clusters 1 need to be specified before the
runming of the algorithm. Furthermore, this algorithm
assumes that each projected cluster has at least
2 dimensions. In the mitialization stage, a set of random
points are selected as the cluster medoids. In the iterative
phase, data points that are close to each medoid are
selected to determine the subspaces for the clusters and
then each data point i1s assigned to its nearest cluster
medoid. Normalized Manhattan segmented distance is
used to measwre the distance between data points in the
context of subspaces. Quality of the current clusters is
evaluated as the average Manhattan segmented distance
from the points to the actual centroids of the clusters to
which they are assigned to. A hill climbing technique is
used to iteratively improve the quality of the clustering
results until the termination criterion 18 met. This algorithm
also assumes that one data point can be assigned to at
most one subspace cluster or classified as an outlier,
while a dimension can belong to multiple clusters.

ORCLUS (Aggarwal and Yu, 2000) is a generalization
from PROCLUS (Aggarwal et al, 1999) which finds
clusters in arbitrarily oriented subspaces. ORCTUS finds
projected clusters as a set of data points C together with

a set of orthogonal vectors such that these data points
are closely clustered in the subspace defined by . Similar
to PROCLUS, the number of clusters k needs to be
decided beforehand. Furthermore, ORCLUS requires that
each cluster must have the same dimension 1. Tnitially, k,
(k;>k) pomnts are randomly selected as the cluster
centroids and their vector spaces are set to be the original
attribute space. In the iterative stage, each data point is
assigned to its closest centroid measured by the projected
Euclidean distance. Then the covariance matrix is
computed for each cluster C, and the set of eigenvectors
corresponding to the g (g»l) smallest eigen values is
selected as *i. Clusters near each cther are merged, so the
values of k, (nmumber of clusters) and q (diumensionality of
the subspaces) keep decreasing dwring the iterative
phase. The iterative step stops when k; reduces to the
predefined number of clusters k and q reduces to the
predefined dimensionality of the subspaces 1.

FIRES (Knegel et af., 2005) 1s a general framework for
efficient subspace clustering. Tt is generic in such a way
that 1t works with all kinds of clustering notions. FIRES
consist of the following three steps: pre clustering,
generation of subspace cluster approximations and post
processing. First, in the pre clustering step, all 1-
dimensional clusters called base-clusters are computed.
This 1s similar to existing subspace clustering approaches
and can be done using any clustering algorithm of choice.
In a second step, the base-clusters are merged to find
maximal-dimensional subspace cluster approximations.
However, they are note merged in an Apriori style but by
using an algorithm that scales at most quadratic w.r.t. the
number of dimensions. As a last step, a post processing
step can be applied to refine the cluster approximations
retrieved after the second step.

A CLICK (Zaki et al., 2007) uses a novel formulation
of categorical subspace clusters, based on the notion of
mining cliques in a k-partite graph. Tt implements an
efficient algorithm to mine k-partite maximal cliques which
correspond to the clusters. Using a novel vertical
encoding we can guarantee the completeness of the
results at a reasonable additional cost without sacrificing
scalability. CLICKS imposes no domain constraint, 1s
scalable to high dimensions, mines subspace and full-
dimensional clusters and outperforms existing approaches
by over an order of magmnitude.

COSA (Friedman and Meulman, 2004) formalizes the
subspace clustering problem as an optimization problem.
The algorithm starts with all dimensions with equal
weights for all data points. In the iterative phase,
conventional full-dimensional clustering methods such as
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the k-Nearest Neighbor algorithm are used to cluster the
data points into clusters based on the curent weights.
Then the weights are re-computed to mimmize an
objective function based on the current clustering results.
The algorithm keeps updating the clusters and the
weights alternately until the weights stabilize. The
motivation for this algorithm 1s that after several
iterations, the weights for the dimensions of a subspace
cluster become large for those data points that belong to
this cluster. The most important parameter for this method
controls the strength of incentive for clustering on more
dimensions. The algonthm returns with mutually exclusive
subspace clusters with each data point assigned to
exactly one subspace cluster. One dimension can belong
to more than one subspace clusters. However, the
subspace 1n which each cluster is embedded 1s not
explicitly known from the algorithm.

The FINDIT (Woo et al., 2004) algorithm which uses
a dimension voting technique to find subspace clusters.
Dimension oriented distance 15 defined to measure the
distance between points based on not only the value
information, but also the dimension information. Two
points are considered similar in one dimension if their
values in this dimension differ by less than £ and the
distance between them is the number of dimensions in
which their differences are larger than €. A smaller sample
containing M data points 15 chosen randomly as the
cluster medoids and a larger sample of size S is chosen as
the data sample. For each medoid peM, the subspaces for
the cluster is voted on by the nearest neighbors of p in S.
Clusters that are too near to each other are merged to
form larger clusters. The quality of a cluster 15 measured
by the product of the number of data points contained in
it and the dimensionality of the subspace of this cluster
and it assumes that there is no overlap between
clusters.

CLTree (Liu et al., 2000) finds subspace clusters in
hyper-rectangular regions using the supervised decision
tree building algorithm. All real data points are labeled as
class "Y' and non-existing points are added on the y
randomly during the running of the algorithm with the
class label "N'. A decision tree 1s built to discriminate
these two classes of data pomts and the regions
containing mostly "Y' points are reported as the final
subspace clusters. Several modifications have been made
on the classic decision tree algorithm to accommodate the
requirements of the subspace clustering problem. A user
oriented final pruning is also proposed to refine the
clustering results. Compared with other partition-based
subspace clustering algorithms, CLTree has the
advantage that it needs no prior mput parameters. As a
by-product, this algorithm returns not only the dense

spots, but also the empty spots which may be useful in
many application areas. But it still makes the assumption
of no overlap between clusters.

Grid-based subspace clustering: Another view on the
subspace clustering problem considers the data matrix as
a high-dimensional grid and the clustering process as a
regions in the grid CLIQUE
(Agrawal et al, 1998), the first subspace clustering

search for dense

algorithm for data mining applications, belongs to this
category. Each dimension is partitioned into intervals of
equal-length and an n-dimensional unit is the intersection
of intervals from n distinct dimensions. A data point 1s
contained in a unit if the values of all its attributes fall in
the mtervals of the unit for all dimensions of the unit. A
unit is dense if the fraction of the total data points
contained in it exceeds an input parameter. The algorithm
starts the search for dense units from single dimensions.
Candidate n-dimensional dense units are generated using
the property that if a unit is dense in k dimensions, all its
ki1 dimensional projection units must all be dense. This
downward closure property dramatically reduces the
search space. Two umts m the same subspace are
connected if they share one common face or they are both
connected to another unit. All connected dense units
form clusters. Finally, clusters are defined to be hyper-
rectangular maximal regions the umon of that covers all
the dense units. Each region is represented as a
Disjunctive Norm Form (DNF) expression. A further
pruning criterion 1s proposed to find only mteresting
subspaces using the coverage
coverage of a subspace is the ratio between the data
contained m all dense units in this subspace and the total
number of data points in the dataset. Based on the
minimal description length techmque, subspaces of low
coverage are pruned during the iterative stage. However,
this pruning may cause losing small clusters in those less

measurement. The

dense subspaces. Since the number of candidate dense
urts grows exponentially in the highest dimensionality of
the dense units, this algorithm becomes very inefficient
when there are clusters in subspaces of high
dimension.

ENCLUS (Cheng et al., 1999) uses entropy instead of
density and coverage as a heuwristic to prune away
uninteresting subspaces. The algorithm shows that a
subspace with clusters tends to have low entropy and
under certain conditions, a subspace with high coverage
also tends to have low entropy. Interest is defined as the
difference between the sum of entropy of each individual
dimension and the entropy of the multi-dimensional

distribution. Subspaces with high interest indicate high
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correlations between dimensions. The algorithm finds
correlated, high density and high coverage subspaces
using a similar level wise search algorithm to the one used
in CLIQUE.

However, this algorithm finds only subspaces within
which meaningful clusters exist, without explicitly finding
the actual clusters.

PMAFIA (Nagesh er al, 2001) proposes to use
adaptive units instead of the rigid ones used in CLIQUE.
First, each dimension is partitioned into windows of small
size and then adjacent windows having similar
distribution are merged to form larger windows.
Uniformly distributed dimensions are partitioned into a
predefined number of equal-length windows. After all the
1-dimensional units are found, it uses a sumilar level wise
search algorithm for dense umnits as with CLIQUE. The
benefit of using the adaptive grids is that the number of
candidate dense units in each iteration is reduced.
Furthermore, since clusters are kept in their natural shape,
there 1s no need to find comnected dense umits like
CLIQUE. Parallelism is introduced to further speedup the
algorithm. However, pMAFIA suffers from the same
problem as CLIQUE, that 1s, the search complexity
mcreases exponentially as a function of the highest
dimensionality of the dense units.

DOC (Density-based Optimal Projective Clustering)
(Procopiuc et al., 2002) proposes a mathematical defimtion
of an optimal projective cluster" along with a Monte Carlo
algorithm to compute approximations of such optimal
projective clusters. A projective cluster is defined as a
pair (C, D) where, C 1s a subset of the data setand D 15 a
subset of the dimensions of the data space. Using the
user specified input parameters w and « an optimal
projective cluster (C, D) 1s given if C contains more than
% of the data set and the projection of C into the
subspace spanned by D must be contained in a hyper-
cube of width w whereas in all other dimensions deD the
points in C are not contained in a hyper-cube of width .
Another parameter B has to be specified that defines the
balance between the mumber of pomnts in C and the
number of dimensions in D. The proposed algorithm DOC
only finds approximations because it generates projected
clusters of width 2w. In addition, no assumption on the
distribution of points inside such a hyper-cube 1s made.
The reported projected clusters may contain additional
noise objects (especially when the size of the projected
cluster 1s considerably smaller than 2w) and or may miss
some pomts that naturally belong to the projected cluster
(especially when the size of the projected cluster is
considerably larger than 2w).

O-Cluster (Milenova and Campos, 2002), this
clustering method combines a novel partitioning active

sampling technique with an axis parallel strategy to
identify continuous areas of lgh density m the input
space. O-cluster is a method that builds upon the
contracting projection concept mtroduced by opt grid.
O-cluster makes two major contributions (1) it uses
statistical test to validate the quality of a cutting plane.
This statistical test identifies good splitting points along
data projections. (2) It can operate on a small buffer
containing a random sample from the original data set.
Partitions that do not have ambiguities are “frozen™ and
the data points associated with them are removed from the
active buffer. O-cluster operates recursively. It evaluates
possible splitting points for all projections in a partition,
selects the “best” one and splits the data into new
partitions. The algorithm proceeds by searching for
good cutting planes inside the newly created partitions.
O-cluster creates a hierarchical tree structure that
translates the input space into rectangular regions. The
main processing stages are (1) load data buffer, (2)
compute histograms for active partitions, (3) Find “best”
splitting points for active partitions, (4) Flag ambiguous
and “frozen” partitions, (5) Split active partitions and (6)
Reload buffer. O-cluster is a non parametric algorithm.
O-cluster functions optimally for large data sets with
many records and high dimensionality.

EWKM (Jing et al, 2007) 13 a new k-means type
subspace clustering algorithm for high-dimensional
sparse data. This algorithm simultaneously mimmize the
within cluster dispersion and maximize the negative
weight entropy in the clustering process. Because this
clustering process awards more dimensions to make
contributions to identification of each cluster, the problem
of identifying clusters by few sparse dimensions can be
avoided. As such, the sparsity problem of high-
dimensional data is tackled. EWKM algorithm is
outperformed other than k-means type algorithms and
subspace clustering methods, for example, PROCLUS and
COSA (Friedman and Meulman, 2004), m recovering
clusters. Except for clustering accuracy, this algorithm is
scalable to large high-dimensional data and easy to use
because the input parameter is not sensitive. The weight
values generated in the clustering process are also useful
for other purposes, for instance, identifying the keywords
to represent the semantics of text clustering results.

COMPARISONS AMONG SUBSPACE
CLUSTERING ALGORITHMS

Here, we study the performance of various subspace
clustering algorithms. We have used run tume, arbitrary
shape clustering and handle noise as parameters for
evaluation of performance among subspace clustering
algorithms. The results are presented in Table 1 and 2.

1098



Inform. Technol J., 10 (6): 1092-1105, 2011

Table 1: Comparisons among subspace clustering algorithms

Algorithm Data sets Run time Arbitrarv shape clustering Handle noise

CLIQUE  Real data sets: Insurl,Insur2,Store data (d-24), O (Ck+mk) No No
Bank data (d = 52),Synthetic data set K-Highest dimensionality, m-munber of input
(d-10 to 100 and n -10,00 to 100,000) points, C-number of chisters.

SUBCLU  Synthetic data set (d =5 to 50 and O (nlogn) Yes Yes
n = 5000 to 30000), Gene expression data(n- 6000)

PROCLUS Ionosphere Data (d-34) [0X(9)] No No
Credit Report Data (d-2) Synthetic data set k- No. of clusters
{d-5 to 40 and n-100,000)

ORCLUS  Synthetic data set O (kP +ky N d + k2.dH) No No
(n-5,000 to 100,000 and d-5 to 40) k%-initial number of seeds, d-dimensional

space and N-no of points

FIRES Bioldata (d- 4000), Bio2 data (d-7100 and n-72) O (n) No Yes
Synthetic data set (n-1,000 and d- 50)

CLICKS Datal(d-10 and n=100), Data 2 O (n.m.|c|+2|cll+n.|c).|[f]) No Yes
(d-4 and n-one million), Mushroom data n-ho of attributes, m-no of records of each
(n- 8124 and d- 22) and Congressional votes attribute,|c|= Exponential number of cliques
(n-435 and d-16) and [f]] =No. of maximal csets.

COSA Data 1(d -10000 and n -100), Data 2 O (hnmL + rém) Yes No

(d -221 and n = 213) and Medical data set
(d-11 and n-242)

h-no of iterations, k -no of clusters, n-number
of objects, m-number of dimensionality and

I.-pre defined parameter to find 1. nearest
neighbors objects.

Table 2: Comparisons among subspace clustering algorithms

Algorithm Data sets Run time

Arbitrary shape clustering  Handle noise

FINDIT 300 data sets (n-100,000 and d-20 to 50)  Q (S| + S| log N/|S] No Yes
N-data set size and 8-random sample size
CLTree  Synthetic data sets (d =10 to 100 O(n log n) No Yes
and n = 100,000 to 500,000)
PMAFIA  Synthetic data sets(n = 1.4 million Real
data sets: One Day Ahead Prediction
of DAX (d-22 and n-2757) Ionosphere O (ck™+N/pBk’y+ aSpk”)B-Number of Yes No
Data (n =34 and d = 351) records that fit in memory buffer, yv-I/0
access time for a block of B records-Constant
for communication, N-Total number of records,
8-8ize of messages exchanger among processors,
P-Number of Processors and k™-Number of Dimensions.
ENCLUS Synthetic data sets (n = 300,000 O ND+ m")
and d =10 to 50) N-no of transactions in database, D-total no of
dimensionality and m-no of intervals in each dimension. No No
O-Cluster Synthetic data sets( d-10 to 100 and 0O N=d)
n-50,000 to 400,000) N-munber of objects and d-number of dimensions. Yes Yes
DOC Synthetic data sets (n = 5,000to O (nd**%)
100,000 and d = 5 to 40) n-no of data points and d-no of dimensions No No
EWKM  Text data sets-20-Newsgroups data and O (humnk)
business transactions data. h-no of iterations, k-no of clusters, n-number
of objects and m-number of dimensionality Yes Yes

DENSITY-BASED CLUSTERING ALGORITHMS

Density-based clustering methods group
neighboring objects into clusters based on local density
conditions rather than proximity between objects
(Sun et al., 2008; Deng et al., 2010). These methods regard
clusters as dense regions being separated by low density
noisy regions. Density-based methods have noise
tolerance and can discover no convex clusters. Similar to
hierarchical and partitioning methods, density-based
techniques encounter difficulties in high dimensional
spaces because of the inherent sparsity of the feature
space which in turn, reduces any clustering tendency.
Some representative examples of density-based clustering
algorithms are:

DBSCAN (Ester et al., 1996) seeks for core objects
whose neighborhoods (radius) contains at least MinPts
points. A set of core objects with overlapping
neighborhoods define the skeleton of a cluster. Non-core
points lying inside the neighborhood of core objects
represent the boundaries of the clusters, while the
remaining is noise. DBSCAN can discover arbitrary-
shaped clusters, is insensitive to outliers and order of
data input, while its complexity is O (N?). If a spatial index
data structure is used the complexity can be improved up
to O (N log N). DBSCAN breaks down in high dimensional
spaces and 1s very sensitive to the input parameters and
MinPts.

OPTICS(Ordering Points To Tdentify the Clustering
Structure) (Ankerst et al., 1999), an extension of DBSCAN
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(Ester et al., 1996) to adapt to local densities, builds an
augmented ordering of data and stores some additional
distance mformation, allowing the extraction of all
density-based clustering for any lower value of the radius.
OPTICS has the same complexity as that of DBSCAN.

GCHL-A  grid-clustering algorithm  for  high-
dimensional very large spatial data bases (Pilevar and
Sukumar, 2005) which groups similar spatial objects mto
classes, is an important component of spatial data mining.
Due to its immense applications in various areas, spatial
clustering has been highly active topic in data miung
researches, with fruitful, scalable clustering methods
developed recently. These spatial clustering methods can
be classified into four categories: partitioning method,
hierarchical method, density-based method and grid-
based method. Clustering large data sets of high
dimensionality has always been a serious challenge for
clustering algorithms. Many recently developed
clustering algorithms have attempted to address either
handling data with very large number of records or data
sets with very high number of dimensions. This new
clustering method GCHL (a Grid-Clustering algorithm for
High-dimensional very Large spatial databases) combines
a novel density-grid based clustering with axis-parallel
partitioning strategy to identify areas of high density in
the input data space. The method operates on a limited
memory buffer and requires at most a single scan through
the data. GCHL demonstrate the high quality of the
obtained clustering solutions, capability of discovering
deeper and higher regions, their robustness to outlier and
noise and GCHL excellent scalability.

DENCLUE (Hinneburg and Keim, 1998) uses an
influence function to describe the impact of a point about
its neighborhood while the overall density of the data
space is the sum of influence fimctions from all data.
Clusters are determined using density attractors, local
maxima of the overall density function. To compute the
sum of influence functions a grid structwre is used.
DENCLUE scales well, can find arbitrary-shaped clusters,
1s noise resistant, 1s msensitive to the data ordering, but
suffers from its sensitivity to the input parameters. The
curse of dimensionality phenomenon heavily affects
DENCLUE’s effectiveness. Moreover, similar to
hierarchical and partitioning techniques, the output, e.g.,
labeled points with cluster identifier, of density-based
methods can not be easily assimilated by humans. The
DENCLUE (Himmneburg and Keim, 1998)alg orithm employs
a cluster model based on kemel density estimation. A
cluster is defined by a local maximum of the estimated
density function. Data points are assigned to clusters by
hill climbing, 1.¢., points going to the same local maximum
are put mto the same cluster. A disadvantage of

DENCLUE 1.0 (Hinnebwurg and Keim, 2003 ) is that the used
hill climbing may make unnecessary small steps in the
beginmng and never converges exactly to the maximum,
1t just comes close then DENCLUE2.0 (Hinneburg and
Gabriel, 2007) was introduced, this new hill climbing
procedwre for Gaussian kernels adjusts the step size
automatically at no extra costs. This procedure converges
exactly towards a local maxinum by reducing it to a
special case of the expectation maximization algorithm.
The new procedure needs much less iterations and can be
accelerated by sampling based methods with sacrificing
only a small amount of accuracy.

Rough-DBSCAN (Viswanath and Suresh Babu, 2009)
is a Density based clustering techniques like DBSCAN are
attractive because it can find arbitrary shaped clusters
along with noisy cutliers. Its time requirement is O (n®)
where n is the size of the dataset and because of this it is
not a suitable one to work with large datasets. This
algorithm apply the leaders clustering method first to
derive the prototypes called leaders from the dataset
which along with prototypes preserves the density
information also, then to use these leaders to derive the
density based clusters. Rough-DBSCAN (Viswanath and
Suresh Babu, 2009) has a time complexity of O (n) only
and is analyzed using rough set theory. The authors
shown that for large datasets rough-DBSCAN can find a
similar clustering as found by the DBSCAN (Ester ef al.,
1996) but are consistently faster than DBSCAN.

In DENCOS (Chu et al., 2010) different density
thresholds is utilized to discover the clusters in different
subspace cardimalities to cop up with density divergence
problem. Here the dense unit discovery 1s performed by
utilizing a novel data structure DFP-tree (Density FP-tree)
which 1s constructed on the data set to store the complete
information of the dense units. From the DFPtree, it
computes the lower bounds and upper bounds of the unit
counts for accelerating the dense unit discovery and this
information are utilized in a divide-and-conquer scheme to
mine the dense units. Therefore, DENCOS 1s devised as a
two-phase algorithm comprised of the preprocessing
phase and the discovering phase. The preprocessing
phase is to construct the DFP-tree on the transformed
data set where the data set 1s transformed with the
purpose of transforming the density conscious subspace
clustering problem into a similar frequent item set mining
problem. Then, in the discovering phase, the DFP-tree is
employed to discover the dense units by using a divide-
and-conquer scheme. The Generalized Grid File (GGF),
using a parameter that defines the number of attributes for
which an access is noted as GGF (1). If single-attribute
access has to be supported, then GGF behaves like a B+-
tree and like a grid file if the number of attributes 1s greater
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than one. However, the identification of dense regions in
previous works lacks of considering a critical problem,
called “the density divergence problem™ 1n this algorithm
which refers to the phenomenon that the region densities
vary in different subspace  cardinalities. Without
considering this problem, previous works utilize a density
threshold to discover the dense regions in all subspaces
which incurs the serious loss of clustering accuracy
(either recall or precision of the resulting clusters) in
different subspace cardinalities. To tackle the density
divergence problem, this algorithm devise a novel
subspace clustering model to discover the clusters based
on the relative region densities in the subspaces where
the clusters are regarded as regions whose densities are
relatively high as compared to the region densities in a
subspace. Based on this 1dea, different density thresholds
are adaptively determined to discover the clusters in
different subspace cardinalities. As validated by owr
extensive experiments on various data sets, DENCOS can
discover the clusters m all subspaces with high quality
and the efficiency of DENCOS outperforms previous
works.

MITOSIS (Yousria et al., 2009) finds arbitrary shapes
of arbitrary densities in high dimensional data. Unlike
previous algorithms, this algorithm uses a dynamic model
that combines both local and global distance measures.
The algorithm's ability to distinguish arbitrary densities in
a complexity of order O (D, log, (n)) renders it attractive to
use. Tts speed is comparable to simpler but less efficient
algorithms and its efficiency is comparable to efficient but
computationally expensive ones. Its ability to distinguish
outliers 1s also of agree at importance m high dimensions.
Moreover, introducing an accompanying parameter
selection procedure makes Mitosis more convement to
use, compared to related algorithms. The experimental
results illustrate the efficiency of Mitosis, compared to
ground truth, for discovering relatively low and high
density clusters of arbitrary shapes. The use of real high
dimensional data sets supports its applicability m real life
applications. Validity indexes indicate that Mitosis out
performs related algorithms as DBSCAN (Ester et al.,
1996) which finds clusters of arbitrary shapes. It is also
compared to a center-based algorithm, illustrating the
umnportance of discovering natural cluster shapes.

V3COCA(Wang et al, 2009) an effective clustering
algorithm for complicated objects and its application in
breast cancer research and diagnosi which can resolve
several 1ssues that have not or only partially, been
addressed by existing clustering algorithms. This
algorithm allows the users to use the algorithm without
providing any parameter input, or to use 1t with a series of
objects as input. Unlike most of the mput dependent

algorithms, the V3COCA algorithm calculates the
necessary parameters automatically. Tt generates explicit
clusters to the users for computer aided diagnosis and
disease research. It recognizes noises from breast cancer
objects. As some of the objects contain errors or have
part of the information missed, these objects are not
expected to be categorized into any clusters. It creates
arbitrary shaped clusters, with different densities. It
adopts a new distance definition to describe the
dissimilarity of two breast cancer objects. Traditional
distance definitions could not be used because the
features composing a breast cancer object may be
numerical or nominal, or have different medical
importance. The new definition makes reasconable
transformation from nominal value to numerical value and
gives different flexible weight values to different features.
The V3COCA meets all the requirements. Although is
more powerful, the time complexity of V3COCA is not
higher than the existing algorithms. It took several
seconds longer in execution time than DBSCAN
(Ester et al., 1996) and K-means in certain cases, but
V3COCA is always faster than the Hierarchical and
OPTICS (Ankerst et al., 1999).0Overall, the V3COCA
generates far more satisfying clustering results withun an
acceptable level of execution time.

PACA-DBSCAN (liang et al, 2011) is based on
partitioming-based DBSCAN and moedified ant clustering
algorithms. It can partiton database into N partitions
according to the density of data, then cluster each
partition with DBSCAN (Ester et al., 1996). Superior to
DBSCAN, The new hybrid algorithm reduces the
sensitivity to the mitial parameters and can deal with data
of uneven density very well. For multi-dimensional data,
the PACA-DBSCAN algorithm does not need to discuss
the distribution of data on each dimension. In contrast
with DBSCAN, The PACA-DBSCAN can correctly cluster
data of very special shape. The results of PACA-
DBSCAN are evaluated and compared by the classical F-
Measure and a proposed criterion (ER). The algorithm has
proved that the performance of PACA-DBSCAN 1s better
than DBSCAN.

APSCAN (Chen et al, 2011) is a parameter free
clustering algorithm. Firstly, 1t utilizes the Affimty
Propagation (AP) algorithm to detect local densities for a
dataset and generate a normalized density list. Secondly,
it combines the first pair of density parameters with any
other pair of density parameters in the normalized density
list as input parameters for a proposed DDBSCAN
(Double-Density-Based SCAN) to produce a set of
clustering results. In this way, it can obtain different
clustering results with varying density parameters derived
from the normalized density list. Thirdly, it develops an
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Table 3: Comparisons among of density based clustering algorithms

Arbitrary
Algorithm Data sets Run time shape clustering Handle noise
DBSCAN SEQUOIA 2000 benchmark O (nlog n) Yes Yes
ROUGH-DBSCAN banana dataset (d-2),Pen digits dataset (d-30 and n =1000) O (n) Yes Yes
and Shuttle dataset (n = 5000)
OPTICS Color histograms (n = 10,000 to 100,000 and d = 64) O (nlog n) Yes Yes
GCHL DS1(n-2000 and d = 5) and D$2 (n=100,000and d=23) O N.p.d) to O (p.dN. log N)
N =no of blocks, D =no of No Yes
dimensions and p-no of blocks)
DENCLUE Synthetic data set (d =11 and n = 20000 to 100000) O(n log n) n-no of data points Yes Yes
DENCOS Synthetic data sets: D81 (d =10 and n =13965) D82 oy
(d =10 and n = 30580), DS3 (d= 10 and n = 4420)and d-dimensionality of data set and Yes Yes
adult database (n = 32561 and d = &) and thyroid disease k-cardinality of data set
m=18152and d=0)
MITOSIS Synthetic control charts data set (n-600 and d-60) , O (nlog n) Yes Yes
Cylinder bell funnel(n-900 and d-128), Optical character
recognition. (n = 5620 and d = 64) and Pen digit character
(n=10992 and d = 18)
V3COCA 10,000 breast cancer cases O (nlog n) Yes Yes
PACA-DBSCAN  Arsetl(d-3 and n-300), [oX{i)] Yes Yes
Artset2 (d-4 and n-1572),
Iris (d-3 and n=150) and
wine (d-3 and n-178)
APSCAN Tov dataset 1 (n =1000) and Tov dataset 2 (n = 500) O (n) Yes Yes

updated rule for the results obtained by implementing the
DDBSCAN with different input parameters and then
synthesizes these clustering results mnto a final result. The
APSCAN has two advantages: first it does not need to
predefine the two parameters as required m DBSCAN
(Ester et al, 1996) and second, it not only can cluster
datasets with varying densities but also preserve the
nonlinear data structure for such datasets.

COMPARISON AMONG DENSITY BASED
CLUSTERING ALGORITHMS

In this section, we study the performance of various
density based clustering algorithms. We have used run
time, arbitrary shape clustering and handle noise as
parameters for evaluation of performance among these
algorithms. Details of performance observations among
density based clustering algorithms are given in Table 3.

CONCLUSION

Clustering techniques have been studied extensively
in the areas of statistics, machine learming and database
commumties in the past decades. Tn most clustering
approaches, the data points in a given data set are
partitioned into clusters such that the points within a
cluster are more sunilar among themselves than data
points in other clusters. However, traditional clustering
techniques fall short when clustering is performed m high
dimensional spaces. In order to overcome the limitations
of traditional clustering algorithms, some attempts have
been made to use genetic algorithms for clustering data
sets.

As the number of dimensions increase, many
clustering techniques begin to suffer from the curse of
dimensionality, degrading the quality of the results.
Densities also suffer from the curse of dimensionality.
Density-based clustering methods hence have problems
to determine the density of a region as the objects are
scattered over the data space.

There are two traditional ways to tackle the problem
of high dimensionality. The first one consists i a variety
of techniques to perform a dimensionality reduction
before the clustering process start. The second way 1s
known as subspace clustering and density based
clustering.

Subspace clustering has been proposed to overcome
this challenge and has been studied extensively in recent
years. The goal of subspace clustering is to locate
clustering in different subspaces of the same data set. In
general, a subspace cluster represents not only the cluster
1t self, but also the subspace where the cluster 1s situated.

The two main categories of subspace clustering
algorithms are partition based approaches and grid
based approaches. First, partition based algorithms
partition the set of objects into mutually exclusive groups.
Each group along with the subset of dimensions where
this group of objects shows the greatest similanity 1s
reported as a subspace cluster. Second, the grid based
subspace clustering algorithms consider the data matrix as
a high-dimensional grid and the clustering process as a
search for dense regions in the grid. Density-based
clustering methods group neighboring objects into
clusters based on local density conditions rather than
proximity between objects. These methods regard clusters
as dense regions beimng separated by low density noisy
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regions. Density-based methods have noise tolerance and
can discover no convex clusters.

In this study, we have discussed clustering problem
with high dimensional data and approaches to solve this
problem. Specifically, we discussed subspace based
clustering approaches and density based approaches. We
presented the latest developments in this area. This study
will also provide direction to the researchers who would
like explore more effective approaches for clustering of
high dimensional data.
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