Survey of Geographical Routing in Multimedia Wireless Sensor Networks

1,2,3 Zhetao Li, 3 Renfa Li, 1 Tingrui Pei, 2 Zhu Xiao and 3 Xiaoming Chen
1 College of Information Engineering, Xiangtan University, Xiangtan, China
2 School of Computer Science, National University of Defense Technology, Changsha, China
3 School of Computers and Communications, Hunan University, Changsha, China

Abstract: Multimedia wireless sensor network contains rich information and are capable of enormous data communications. In all kinds of routing protocols, geographic routing has been regarded as one of the most promising routing methods for multimedia wireless sensor networks due to its simplicity and scalability. This study presented an overview of forward mechanism and surveyed the currently available techniques for geographical routing. In this survey, we firstly presented four classic protocols; then we summarized their advantages and disadvantages for multimedia wireless sensor networks; finally we discussed some possible directions of future research.

Key words: Multimedia wireless sensor network, multimedia communication, routing, geographical routing, forward mechanism

INTRODUCTION

With ever increasing advancement in the manufacturing industry and extensive application of sensor network, Multimedia Wireless Sensor Networks (MWSN) have attracted unprecedented attention (Ruiyang et al., 2009). MWSN has some unique characteristics, such as containing rich information, enormous data communication and equal energy-consumption of each unit (Akyildiz et al., 2007). Because of these special characteristics of MWSN, it was very difficult to transplant geographical routing protocols of traditional Scalar Wireless Sensor Networks (SWSN) to MWSN directly (Li et al., 2009).

In all kinds of routing, for example AODV (Zhaoxia et al., 2009; Tingrui et al., 2009) geographical routing has been regarded as one of the most promising routing methods for multimedia wireless sensor networks due to its low computational complexity and scalability (Bin et al., 2009). It requires no routing information exchange nor does it need to maintain a large routing table (Li et al., 2009).

Our contribution in this study is to survey the state of the art of geographic routing in multimedia wireless sensor networks. We also compared four classic geographical routing protocols from different perspectives in order to discuss directions of future research on this problem.

FORWARD MECHANISM IN GEOGRAPHICAL ROUTING

Greedy forwarding chose a router's immediate neighbors geographically closest to the destination. Due to its simplicity and scalability, this strategy was used in various geographical routing algorithms.

Besides Greedy Forwarding Scheme (GFS) (Finne, 1987), there are MFR/Most Forward within Radius) (Takagi and Kleinrock, 1984), NFP (Nearest Forward Progress) (Hou and Li, 1986), (Compass Routing) (Kranakis et al., 1999), RPF (Random Progress Forward) (Nelson and Kleinrock, 1984) etc. Figure 1 illustrates different forwarding mechanism. Node S is the current location of date packet, R is the communication radius of node S, all nodes in the circular dashed are the neighbor of node S, node D is the destination of data packet.

According to the different location of each node, we can obtain six relations from Fig. 1.

\[\min(|CD|,|GD|,|ND|,|MD|) = |GE| \] \hspace{1cm} (1)

\[\max(|Sc|,|Sf|,|Sm|,|Sn|) = |Sm| \] \hspace{1cm} (2)

\[\min(|Sc|,|Sf|,|Sm|,|Sn|) = |Sn| \] \hspace{1cm} (3)

\[\min(\angle CSD, \angle GSD, \angle MSD, \angle NSD) = \angle CSD \] \hspace{1cm} (4)

\[\min(\angle GSD, \angle NSD) = \angle GSD \] \hspace{1cm} (5)

Corresponding Author: Zhetao Li, College of Information Engineering, Xiangtan University, Xiangtan, 411105, China
Tel: 86 731 58292201 Fax: 86 731 58292201
Table 1: Comparison of different forward mechanisms

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFS</td>
<td>Poor reliability</td>
</tr>
<tr>
<td>No loop routing</td>
<td>High transmission power</td>
</tr>
<tr>
<td>Small hops of routing</td>
<td></td>
</tr>
<tr>
<td>Maximum forward to destination</td>
<td></td>
</tr>
<tr>
<td>MFR</td>
<td>Exist loop routing</td>
</tr>
<tr>
<td>Less hops of routing</td>
<td></td>
</tr>
<tr>
<td>Farthest to current node</td>
<td></td>
</tr>
<tr>
<td>NFP</td>
<td>Minimum forward to destination</td>
</tr>
<tr>
<td>High reliability</td>
<td>More hops of routing</td>
</tr>
<tr>
<td>CR</td>
<td>Exist loop routing</td>
</tr>
<tr>
<td>Minimum range of transmission</td>
<td></td>
</tr>
<tr>
<td>directions</td>
<td></td>
</tr>
<tr>
<td>RCR</td>
<td>Eliminate loop routing</td>
</tr>
<tr>
<td>Minimum range of transmission</td>
<td></td>
</tr>
<tr>
<td>directions</td>
<td></td>
</tr>
<tr>
<td>RPF</td>
<td>Uncontrollable delay and hops</td>
</tr>
</tbody>
</table>

\[
\text{min}(\angle \text{CSD}, \angle \text{MSD}) = \angle \text{CSD}
\]

GFS chose node G by Eq. 1 as the next step. MFR chose node M by Eq. 2 as the next step. NFP chose node N by Eq. 3 as the next step. CR chose node C by formula Eq. 4 as the next step. Randomized Compass Routing (RCR) chose node G by Eq. 5 or node C by Eq. 6 as the next step (Kranakis et al., 1999). The RPF arbitrarily chose a node from node N, G, M and S as the next step. Different forward mechanisms have different advantages and disadvantages. Table 1 shows their differences.

All these forward mechanisms come from geographical routing for scalar wireless sensor network. Although data communication transmission in multimedia wireless sensor network is much larger than scalar wireless sensor network, they are still suitable for multimedia wireless sensor network.

CLASSIC GEOGRAPHICAL ROUTING

Greedy perimeter stateless routing: Karp’s GFSR protocol chose greedy forwarding as basic data forwarding strategy (Karp and Kung, 2000). Greedy forwarding behaves well in practice, but it fails to yield a path to the destination when encounter a void area, where no node exists, for example Fig. 2 (Li et al., 2009).

GPRS uses the right-hand rule (Fig. 3) to find the route to the destination when greedy strategy fails and this kind of perimeter mode commonly result in excessive hops.

Advantages:

- Low computational complexity
- It doesn’t exist loop routing
- High energy efficiency with voiding flooding
- Path length close to shortest Euclidean distance

Disadvantages:

- Because need distributed planarization algorithm, it doesn’t suitable for 3D geographical routing
- Perimeter mode was almost impossible to find the optimal path
- It was not a self-learning algorithm
Fig. 4: Anchor-based geographical routing. S: Source node and D: Destination node. X_1, X_2, and X_3 are anchors

Anchor-based geographical routing: In order to avoid perimeter mode, Blazevic et al. (2005) introduced the concept of anchors, which are imaginary locations used to assist in routing. The location of anchors will add to the header of data packet. Hence, the route is controlled by these anchors, source node and destination node. The packet is sent by intermediate nodes in the direction of the next anchor until it reaches the destination node (Blazevic et al., 2005). As shown in Fig. 4, source S uses X_1, X_2, X_3 anchors to route the packet to D. Between anchors, such as (X_1X_2, X_2X_3), only greedy geographical routing is used for forwarding.

Advantages:
- It was suitable for static network and static void
- Pre-configuration avoid perimeter mode

Disadvantages:
- In MWSN, anchors need repeated configuration
- Source node need save all the anchors’ locations
- It was not suitable for communication between two arbitrary nodes

Waypoint-based geographical routing: Huang (2004) define a relative coordinate system in which x-axis is aligned with the line determined by the sender S and the receiver D. Waypoints are the nodes the route must pass through. As shown in Fig. 5 and 6, W1, W2, W3 and W4 are waypoints. They are selected progressively as the packet makes its journey until the destination is reached. A small fixed number of bits in a packet header are used to encode waypoints’ location of a path.

Fig. 5: Single-void network topology. (a) The route obtained by GPSR (Green solid line) and (b) The route obtained by Huang (2004) (Red dash line)

Fig. 6: Multi-voids network topology. (a) The route obtained by GPSR (Green solid line), (b) The route obtained by Huang (2004) (Red dash line) and (c) Optimal route (Black dash line)

Advantages:
- Flexible numbers of waypoint.
- Reduce inefficiency of perimeter routing
- Suit for dynamic networks

Disadvantages:
- The proposed path may not be optimal, for example in Fig. 6, the optimal route is black dash line, not red dash line
- Changed the header of data packet in ordinary geographical routing protocol
- The additional bits in the header of packet will slow down information transmission rate (Li et al., 2009)

Asymptotically optimal geographical routing: Li et al. (2009) presents Asymptotically Optimal Geographical Routing (AOG) for MWSN. Its goal is to optimize the average routing hops per packet. In AOG, the reference of delivered packets to subsequent packets in routing will be exploited. That is to say, as the number of delivered packet increases, the routing path asymptotically converges to the optimal path. By selecting some of the nodes as features, the route will be controlled by the
CONCLUSION

In this survey article we have reviewed the state of the art of geographical routing protocols in multimedia wireless sensor networks. We have discussed different forward mechanism and got a comparison table. In addition, we have analyzed four classic geographical routing protocols of multimedia wireless sensor networks and compared their advantages and disadvantages. Finally, we summarized two directions of future research in order to stimulate more creative research.

ACKNOWLEDGMENT

This study is supported by Natural Science Research Fund of Hunan Provincial Education Department: Cross-layer research on time synchronization in multimedia wireless sensor network.

REFERENCES

