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Abstract: Secure remote internet voting protocols play an important role in electrome government. In order to
assess its claimed security, several formal models of soundness and coercion-resistance have been proposed
in the past literatures, but these formal models are not supported by mechanized tools. Recently, Backes et al.
propose a new mechanized formal model of security properties including soundness and coercion-resistance
in applied PI calculus. Acquisti protocol 15 one of the most inportant remote internet voting protocols that
claims to satisfy formal definitions of key properties without strong physical constrains. But in the study the
analysis of its ¢laimed security is finished by hand. Owning to the contribution of Backes et al., Acquisti
protocol can be analyzed with mechanized tool. In this study, firstly the review of the formal analysis of
electronic voting protocols are introduced we can find that the formal model and analysis of security properties
mainly focus on receipt-freeness and coercion-resistance. Until now the security analysis model based on
computational model have not been proposed; then applied PT calculus and the mechanized proof tool ProVerif
are examined. After that Acquisti protocol 1s modeled in applied PI calculus. Finally security properties,
including soundness and coercion resistance, are proved with ProVerif, a resolution-based mechanized theorem
prover for security protocols. The result we obtain is that Acquisti protocol has the soundness and coercion-
resistance in some conditions. To our best knowledge, the first mechanized proof of Acquisti protocel for an

unbounded number of honest and corrupted voters 1s presented.
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INTRODUCTION

With the development of Internet and mformation
technology, electronic government has got serious
attention from enterprise and academic world. Owning to
advantages of remote internet voting, it plays an
umportant role in electronic government. In order to assess
its security and increase confidence of the voters in
remote internet voting system and protocols, many
researchers have pay attention to design and verification
on secure remote intermet voting systems and protocols.
Remote internet voting protocol is a key part of internet
voting system. So how to develop and verify a practical
secure internet voting protocol 15 a challenging issue
(Abadi and Gordon, 1999).

The practical secwre remote internet voting
protocol should include the basic and expanded
properties.  Basic  properties  include
completeness, soundness (Abadi and Fournet, 2001),
fairness and invariableness. Hxpanded properties include
universal verifiability (Sako and Killian, 1995), receipt-
freeness (Benaloh and Tuinstra, 1994, ) and coercion-

resistance (Juels and Jakobsson, 2002). Recently research
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focus on implementation and formal analysis of
receipt-freeness and coercion-resistance.

Soundness 1s typically consists of malterability,
eligibility and unreusability (Backes et al, 2008a).
Universal verifiability describes that any one can verify
the fact that the election is fair and the published tally is
correctly computed from the ballots that were correctly
cast (Sake and Killian, 1995). Receipt-freeness is to
protect against vote buying (Benaloh and Tuinstra, 1994).
The voter can not produce a receipt to prove that he
votes a special ballot. Coercion resistance means that it
should offer not only receipt-freeness, but also defense
against randomization, forced-abstention and simulation
attacks (Juels and Jakobsson, 2002).

In the last twenty years many remote internet voting
protocols (Benaloh and Tuinstra, 1994; Magkos et al.,
2001, JTuels and Jakobsson, 2002; Acquisti, 2004; Chaumn,
2004; Juels et al, 2005, Chaum et al., 2005; Rivest,
2006; Cichon et al., 2008; Clarkson et af., 2008,
Meng, 2007a, 2009, ¢, d; Meng et al., 201 0a-c; Meng and
Wang, 2010), claimed on their security, have be proposed.
In order to assess and verify security properties of remote
internet voting protocol there are two model can be  used:
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one is formal model (or Dolev-Yao, symbolic model) in
which cryptographic primitives are ideally abstracted as
black boxes, the other is computational model (or
cryptographic model) based on complexity and probability
theory. Firstly each model formally defines security
properties expected from security protocol and then
develop methods for strictly proving that given security
protocols satisfy these requirements in adversarial
environments. Computational model is complicated and is
difficult to get the support of mechanized proof tools. In
contrast, symbolic model is considerably simpler than the
computational model, proofs are therefore also sumpler
and can sometimes benefit from mechanized proof tools
support. For example: SMV (McMillan, 1992; Mei et al.,
2009), NRI. (Meadows, 1996), Casper (Lowe, 1998),
Isabelle (Paulson, 1998), Athena (Song, 1999), Revere
(Kindred, 1999), SPTN (Maggi and Sisto, 2002), Brutus
(Clarke et al., 2000), ProVerif (Blanchet, 2001), Scyther
(Joseph and Cremers, 2006).

ProVenf (Blanchet, 2001) 1s an mechanized proof of
cryptographic protocol verifier based on a representation
of the protocol by Hormn clauses or applied PI calculus. It
can handle many different cryptographic primitives,
mcluding shared- and public-key encryption and
signatwres, hash functions and Deffie-Hellman key
agreements, specified both as rewrite rules and as
equations. Tt can also deal with an unbounded number of
sessions of the protocol (even in parallel) and an
unbounded message space. When ProVerif cannot prove
a property, it can reconstruct an attack, that is, an
execution trace of the protocol that falsifies the desired
property. This verifier can prove the following properties:
secrecy, authentication and  more  generally
correspondence properties, strong secrecy, equivalences
between processes that differ only by terms. ProVerif has
been tested on protocols of the literature with very great
results (http://www.proverif.ens.fr/proverif-users.html).

Acquistt (2004) protocol 1s one of the most important
remote internet voting protocols that claims to satisfy
formal defimtions of key properties, such as soundness,
individual verifiability, as well as receipt-freeness and
coercion resistance without strong physical constrains. In
their study, analysis of security properties of Acquisti
protocol 1s done by hand, this method depend on experts
knowledge and skill and is prone to make mistakes, so
here we use mechamzed proof tool ProVernf to verfy
security properties of Acquisti protocol.

The main contributions of this study are summarized
as follows:
¢+ Review the formal analysis of security properties in
electronic voting protocol. Many formal models have
been proposed, but only the Bakes et al. model
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supports the mechanized proof tool. The formal
model and analysis of security properties mainly
focus on receipt-freeness and coercion-resistance
which are important properties. Until now the
security analysis model based on computational
model have not been proposed

Apply the mechanized formal model proposed by
Backes et @l (2008a) for mechamzed proof of
Acquisti protocol and its security properties.
Therefore, Acquisti protocol 18 modeled in applied P1
caleulus and the soundness and coercion-resistance
take into account. The proof itself i1s performed by
mechamzed proof tool ProVerif developed by
Blanchet (2001)

The result we obtain is that Acquisti protocol has
coerclon-resistance in some conditions. At the same
time it also has the soundness. To ow best
knowledge, we are conducting the first mechanized
proof of Acquisti protocol for an unbounded number
of honest and corrupted voters

Formal methods are an important tool for designing
and implementing secure cryptographic protocol. By
applying techmiques concerned with the construction and
analysis of models and proving that certain properties
hold in the context of these moedels, formal methods can
significantly increase one’s confidence that a protocol will
meet its requirements in the real world.

The development of formal methods has started in
1980s (Yao, 1982; DeMillo et al., 1982; Dolev and Yao,
1983; Merritt, 1983; Blum and Micali, 1984; Hoare, 1985;
Burrows et al, 1989, 1990). This field matured
considerably in the 1990s. Some of the methods rely on
rigorous but informal frameworks, sometimes supporting
sophisticated  complexity-theoretic  defimitions  and
arguments. Others rely on formalisms specially tailored for
this task. Yet others are based on Mur (Mitchell et o,
1997) strand space (Thayer et al., 1998), SPI calculus
(Abadi and Gordon, 1999) Kessler and Neumann logic
(Kessler and Neumann, 1998) applied PI calculus
(Abadi and Fournet, 2001).

Owning to the abstraction ideally of cryptography,
formal methods are often quite effective; a fairly abstract
view of cryptography often suffices in the design,
implementation and analysis of security protocols. Formal
methods enable relatively sumple reasoning and alse
benefit from substantial work on proof methods and from
extensive tool support, for example, SMV (McMillan,
1992), NRL (Meadows, 1996), Casper (Lowe, 1998),
Isabelle (Paulson, 1998), Athena (Song, 1999), Revere
(Kindred, 1999), SPIN (Maggi and Sisto, 2002), Brutus
(Clarke et al., 2000), ProVerif (Blanchet, 2001), Scyther
(Joseph and Cremers, 2006).
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Delaune et al (2006a) have done a path breaking
work on the formal definition of receipt-freeness and
coercion-resistance in applied PI calculus. Their formal
model is based on Dolev-Yao model. They formalize
receipt-freeness as an observational equivalence. The
idea is that if the attacker can not find if arbitrary honest
voters V, and V; exchange their votes, then in general he
can not know anything about how V, (or V) voted. This
definition is robust even in situations where the result of
the election is such that the votes of V, and V, are
necessarily revealed. They also assume that the voter
cooperates with the coercer by sharing secrets, but the
coercer cannot interact with the voter to give her some
prepared messages. They use adaptive simulation to
formalize coercion-resistance. The ideas of this definition
is that whenever the coercer requests a given vote then
V; can change his vote and counterbalance the outcome.
However, avoid the case where V' =V, {c/v}™2 letting Vg
vote ¢ is needed. Therefore, requirement that when we
apply a context C, intuitively the coercer, requesting
V, {c~l™2 to vote ¢, V' in the same context votes «.
There may be circumstances where V' may need not to
cast a vote that is not. In the case of coercion-resistance,
the coercer is assumed to communicate with voter during
the protocol and can prepare messages which she should
send during the election process. Their formal definition
of coercion-resistance base on the informal definition: a
voter cannot cooperate with a coercer to prove to him that
she voted in a certain way. Lee et al. (2003) protocol is
analyzed with their formal model. Meng (2008) also apply
their formal model to analyze the protocol (Meng, 2007a).
Delaune et al. (2005) model receipt-freeness and analyze
Lee et al. (2003) protocol. Delaune et al. (2006b) use
applied PI calculus to model fairness, eligibility,
privacy, receipt-freeness and coercion-resistance and
analyze the protocols (Fujioka et al., 1992; Lee et al,
2003). Backes et al. (2008a) point out that definitions of
coercion-resistance Delaune et <l (2006a) are not
amenable to automation and do not consider forced-
abstention attacks and do not apply to remote voting
protocols, they give an formal model of security
properties of remote internet voting protocol in applied PT
calculus and use the ProVerif to mechamized verify the
security properties of Juels et al (2005) protocol.
Gerling et al. (2008) apply the model (Backes et ol., 2008a)
with ProVerif to mechamzed verify Clarkson et al. (2008)
protocol. Meng et al. (2010b, ¢) also use the Backes et al.
(2008a) model to mechanized verify Acquisti (2004)
protocol and Meng et al. (201 0a) protocol.

Jonker and de Vink (2006) also point out that the
formal model (Delaune et al., 2006a) offers little help to
identify receipts when receipts are present. So Jonker and
de Vink present a new formal method, which uses the
process algebra, to analyze receipts based on their
informal definition: a receipt r is an object that proves that
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a voter v cast a vote for candidate ¢. This means that a
receipt has the following properties: (R1) receipt can only
have been generated by v. (R2) receipt proves that voter
chose candidate. (R3) receipt proves that voter cast her
vote. Jonker and de Vink provide a generic and uniform
formalism that captures a receipt. Jonker and de Vink
formal model is also simpler than Delaune et al. formal
model. They use the formalism to analyze the voting
protocols (Benaloh and Tuinstra, 1994; Sako and
Killian, 1995; Hirt and Sako, 2000, Aditya et al,
2004; Hubbers et al., 2005). Meng (2007b) analyzes
receipt-freeness of the protocols (Fujioka et al, 1992,
Cramer et al., 1997; Tuels and Jakobsson, 2002; Acquisti,
2004) based on formalism (Jonker and de Vink, 2006).

About definition of receipt proposed by Jonker and
de Vink (2006) think it is worth discussing. Firstly, about
(R1) r can only have been generated by v, in some voting
protocol, one part of receipt is generated by the authority,
not generated by voter. Secondly, they give the following
auxiliary receipt decomposition functions: a: Rept 7AT,
which extracts the authentication term from a receipt.
Authentication term should be the identification of voter.
Thirdly the author does not prove the generic and uniform
formalism that is right in their study. Finally they use a
special notation, it difficult to use and generalize it. Hence,
Meng gives a formal logic framework for receipt-freeness
based on Kessler and Neumann (1998) and apply it to
analyze (Fujioka et al., 1992) protocol.

Knowledge-based logics have been also used in the
studies (Tonker and Pieters, 2006, Baskar et «l., 2007,
Van Eijck and Orzan, 2007) to formally analyze the security
properties of e-voting protocol. Tonker and Pieters (2006)
formalize the concept of receipt-freeness from the
perspective of a anonymity approach in epistemic logic
which offers, among others, the possibility to write
properties allowing to reason about the knowledge of an
agent a of the system with respect to a proposition p.
They classify receipt-freeness into two types: weak
receipt-freeness and strong receipt-freeness. Weak
receipt-freeness implies that the voter cannot prove to the
spy that she sent message m during the protocol, where
m is the part of a message representing the vote. Here, no
matter what information the voter supplies to the spy, any
vote in the anonymity set is still possible. In other words,
for all possible votes, the spy still suspects that the voter
cast this particular vote; or: the spy is not certain she did
not cast this vote. Baskar et al. (2007) gave the formal
definition of secrecy, receipt-freeness, fairness, individual
verifiability based on knowledge-based logic and analyze
receipt-freeness of Fujioka et al. (1992) protocol. Van Eijck
and Orzan (2007) use dynamic epistemic Logic to model
security protocols and properties, in particular anonymity
properties. They apply it to Fujioka ef al. (1992) scheme
and find the three phases should be strictly separated,
otherwise anonymity is compromised. Mauw et al. (2007)
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use the process algebra to analyze the data anonymity
of the voting scheme (Fujioka et al., 1992). Talbi et al.
(2008) use ADM logic to specify security properties
(fairness, eligibility, individual wverifiability —and
universal verifiability) and analyze Fujioka et of. (1992)
protocol. Their goal is to verify these properties
against a trace-based model. Groth (2004) evaluated the

The formal methods used in formal models of
soundness, receipt-freeness and coercion-resistance are
presented in Table 1. We can found in Table 1 until now
only the Bakes et al. model supports the mechanized
proof tool. The security properties formally modeled is
presented in Table 2. The formally analyzing security
properties in the Internet voting protocol is described in

voting scheme based on homomorphic threshold Table 3. From Table 1-3 we can get that the formal model
encryption with universal composability framework. and analysis of secwity properties mainly focus on
He formalizes the privacy, robustness, fairness and  receipt-freeness and coercion-resistacne that are
accuracy. important properties.
Table 1: The formal methods used in formal models of soundness, receipt-freeness and coercion-resistance

Delaune et dal. Jonker and Meng Jonker and Baskar et al. Bakes et al.
Properties Formal method (2006a) de Vink (2006) (2009b) Pieters (2006) (2007) (2008a)
Soundness applied PI calculus o]

Receipt-freeness Applied PI calculus .
Process algebra

Kessler and Neumnann logic
Epistemic logic

Knowledge-based logic
Coercion-resistance Applied PI calculus .

L{o]

L40]

The mark » represents the formal method is used. The mark o represents the formal models is supported by mechanized proof tool

Table 2: The security properties forrnally modeled

Individual Universal
Properties Faimess Soundness Eligibility Privacy Receipt-freeness Coercion-resistance Secrecy verifiability verifiability Anonymity
Baskar et al. (2007) . . . .
Meng (2009b) .
Jonker and de Vink (2006) .
Delaune et al. (2005) .
van Eijck and Orzan (2007) .
Kremer and Ryan (2005) . . .
Delaune et al. (2006b) . . . . .
Bakes et al. (2008a) [Xo] 0 0 Y}
Talbi et al. (2008) . . . .

Mauw et al. (2007)

The mark  represents the property is formally defined; The mark o represents the formal definitions is supported by mechanized proof tool

Table 3: Formally analyzing security properties in the Intemet voting protocol

Analyized protocol Soundness Receipt-freeness Concerion-registance
Bakes et al. (2008a) Juels et al. (2005) . . .
Gerling et al. (2008) Clarksonet af. (2008) . .
Meng et al. (2010c¢) Meng et al. (2010a) O .

Baskar et al. (2007)
Meng (2009b)

Fujioka et al. (1992)
Fujioka et al. (1992)

Meng (2007a)

Fujioka et al. (1992)
Cramer et al. (1997)

Juels and Jakobsson (2002)
Acquisti (2004)

Benaloh and Tuinstra (1994)
Sako and Kilian (1995)
Hirt and Sako (2000)
Aditya et al. (2004)
Hubbers et ai. (2005)
Leeet al. (2003)

Meng (2007b)

Jonker and de Vink (2006)

Delaune ef ai. (2005)

% * *OOFEFEOO*OO0O®" *

Analvized protocol

Individual Universal

Faimess Eligibility Privacy Receipt-freeness Coercion-resistance verifiability verifiability Anonymity

Van Eijck and Orzan (2007) Fujioka et al. (1992)
Mauw et al. (2007)

Talbi et al. (2008) . . . *
Delaune et . (2005) . . .
Meng (2008) Meng (2007a) . .
Delaune et al. (2006b) Lee et al. (2003) . . . . .
Fujicka et af. (1992) « . . & &

The mark » represents the protocol has the property; The mark O represents the protocol has not the property; The mark A represents the protocol has the

property with some condition
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Above previous formal models and analysis is based
Until now people have not
based

on symbolic model

proposed a security analysis model on

computational model.
CONTRIBUTION AND OVERVIEW

In the
voting protocol have been introduced. Owning to the

last two decades many remote internet

complexity how to assess their security is a challenging
1ssue. Formal method 1s crucial to assess their security.
So, in this study we firstly review the development of the
formal method on remote electronic voting protocol,
we found that formal
proposed, but only the Bakes et al model support the

several model have been

mechanized proof tool and the formal model and

analysis  of security properties mainly focus on
receipt-freeness and coercion-resistance that are
unportant properties. Until now people have not

proposed a security proof model based computational
model; and then apply the mechanized formal model
proposed by Backes et al (2008a) to prove Acquisti
protocol and its security properties mcluding soundness
and Therefore, first, Acquisti
protocol is modeled in applied PT calculus and then its

coercion-resistance.

proof 1s performed by mechamzed proof tool ProVerif.
The result is that Acquisti protocol has the soundness.
At the same time it has also coercion-resistance in the
conditions that the channel between registration authority
and voter is private. To our best knowledge, we are
conducting the first mechamzed proof of Acquisti
protocol for an unbounded number of honest and
corrupted voters.

Acquisti  protocol is modeled with applied PI
calculus  (Abadi  and Fournet, 2001). Qur choice is
based on the fact that applied P1 calculus allows the
modeling of relations between data in a simple and precise
manner using equational theories over term algebra. The
general analysis model is introduced in Fig. 1. Acquisti
protocol i applied PI calculus 1s illustrated in Fig. 2.
There, the security properties model is equivalence
between processes, while the attacker 1s thought as an
arbitrary process running in parallel with the protocol
process representing the adversary model, which is the
parallel composition of the (sequential) protocol
participants’ The considered attacker
stronger than the basic Dolev_Yao attacker since it can

processes. is
exploit particular relations between the messages by using
particular equational theories stating the message
relations.
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Ve

Diolev-Yao model

Concutrent processes

Security properties
Observation equivalence

Adversary model
Terms and equational theory

Analysis model of remote internet voting protocol
¥ with applied Pi calenlus

A v,

Fig. 1: Analysis model of remote internet voting protocol

with applied PI calculus
Acquisti protocol
Backes model
Security properties
Attacker model >

| TONEITIA POy |

Applied pi-calculus

[ roverr

Formal model

Fig. 2: Mechanized proof of Acquisti protocol
REVIEW OF THE APPLIED PI CALCULUS

Applied PI calculus 1s a language for describing
concwrent processes and their interactions based on
Delov_Yao model. Applied PT calculus is an extension of
the PI calculus that mbherits the constructs for
communication and concurrency from the pure pi-
calculus. Tt preserves the constructs for generating
statically scoped new names and permits a general
systematic development of syntax, operational semantics
equivalence and proof techniques. At the same time there
are several powerful mechanized proof tool supported
appled pi-calculus, for example, ProVerif. Applied PL
calculus with ProVerif has been used to study a variety of
complicated security protocols, such as a certified email
protocol, just fast keying protocol (Abadi et al., 2004;
Tuels et al., 2005) remote electronic voting protocol
(Backes ef al., 2008a), a key establishment protocol, direct
anonymous attestation protocol (Backes et al, 2008b),
TLS protocol (Bhargavan et al., 2008; Meng et al., 201 0a)
remote internet voting protocol (Meng ef al., 2010c¢).

Syntax: In applied PT calculus, terms in Fig. 3 consists of
name, variables and signature . ¥ is set of function
symbols, each with an arity. Terms and function symbols
are sorted and of course function symbol application must
respect sorts and arities. Typically, we let a, b and ¢ range
over channel names. Let, x, v and z range over variables
and u over variables and names. We abbreviate an
arbitrary sequence of terms M, M, to M.
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M N, T.V:=
X

terms
variable
a,b,c,...mn name
f(M,,L.M,) function application

Fig. 3: Terms
P.QR:= plain processes
0 null process
Qlp parallel composition
'P replication
vn.P name restriction

it M=N then P else Q conditional
in (u,x).P
out{u,N).P

message input

message output

Fig. 4: Plain process

ABCi= extended processes
P plain process
AlB parallel composition
vn.A name restriction
VKA variable restriction
{M x} active substituation

Fig. 5: Extended process

In applied PI calculus, it has plain processes and
extended processes. Plain processes in Fig. 4 are built up
1n a similar way to processes in the PI calculus, except that
messages can contain terms (rather than just names) and
that names need not be just channel names:

The process O is an empty process. The process Q|P
is the parallel composition of P and Q. The replication P
produces an infinite number of copies of P which run in
parallel. The process viP firstly creates a new, private
name then executes as P. The abbreviation vii i3 a
sequence of name restrictions v,,...,v,; The process in
(1,x).P receives a message from channel u and runs the
process P by replacing formal parameter x by the actual
message. We use in(u,M)P for the mput of terms
M,....M,. The process out(u,N).P 1s firstly ready to output
the message N on the channel u and then runs the
process P. The process out(u,N)P is the abbreviation for
the output of terms N,,...,.N . The conditional construct if
M = N then P else Q runs that if M and N are equal,
executes P, otherwise executes Q.

Extended processes in Fig. 5 add active substitutions
and restriction on variables:

We write {M/x} for active substitution which
replaces the variable x with the term M. The substitution
typically appears when the term M has been sent to the

298

environment, but the environment may not have the
atomic names that appear in M; the vanable x 1s just a way
to refer to M in this situation. We write fv(A), fn(A) for
the free variables and name in a process A, respectively.
We write bv(A) bn(A) for the bound variables and name
in a process A, respectively.

A frame is an extended process built up from 0 and
active substitutions of the form {M/x} by parallel
composition and restriction. Let, ¢ and | range over
frames. The domain dom(¢) of a frame ¢ is the set of the
variables that ¢ exports. Active substitutions are useful
because they allow us to map an extended process A to
its frame @(A) by replacing every plain process in A with
0. The frame @{A) can be viewed as an approximation of
A that accounts for the static knowledge A exposes to its
environment, but not A’s dynamic behavior. The domain
of dom(A) is the domain of @(A). A process or extended
process with a hole is called a context. The plain process
with a hole is called plain context. Those plain contexts
without replications, conditionals, inputs or outputs are
called sequential contexts. A context C[_] closes A if
C[A] is closed.

A signature Y. is equipped with an equational
theory that is an equivalence relation on terms that is
closed under substitutions of terms for variables. An
equational theory 1s generated from a finite set of
equational axioms. Tt models the algebraic properties of
cryptographic primitives. We write 3.|-M = N for equality
within the equational theory ¥ and ¥|-/M = N for
inequality.

Operational semantics: The operational semantic is
inherited from the applied PI calculus and is defined by
structural equivalence (=) and internal reduction (—).

Structural equivalence in Fig. 6 (=) is the smallest
equivalence relation on extended processes that is closed
by « conversion on both names and variables, by
application of evaluation contexts, Structural equivalence
can make the introduction and application of an active
substitution and the equational rewriting of the terms in
a process. Structural equivalence satisfies the rules in the
following:

The rules for parallel composition and restriction are
standard. A, .; emables the mtroduction of an arbitrary
active substitution. S.zsr describes the application of an
active substitution to a process that i1s 1 contact with it.
Rewrite deals with equational rewriting.

Internal reduction (—) relies on the equational theory
and defines the semantics of process conditionals as well
as mput and output. Internal reduction m Fig. 7 is the
smallest relation on extended processes closed by
structural equivalence and application of evaluation
contexts such that:
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Ty and B g directly depend on the underlying
equational theory; using E.; sometimes requires that
active substitutions n the context be applied first, to yield
ground terms M and N.

We write Ala when A can send a message on a, that
is, when A —"C[a{M).P ] for some evaluation context C[_]
that does not bind a Observational equivalence
constitutes an equivalence relation that captures the
equivalence of processes with respect to their dynamic
behavior. Observational equivalence (=) is the largest
symmetric relation R between closed extended processes
with the same domain such that A R B implies:

Par-0 A=Al0
Pa-A Al(B|C)=(A[B)[C
Paz-C A|B=BlA
Ree IP=P|IP
New-0 n0=0
New-C VULVV.A = VV.VILA
NewPar  AlwuB=vu{A|B) whenug fv(A)ufi(A)
Arss w{M/1=0
swr {MoA={MEHARK
Rewrite {MA} = {%} when 2|7M =N
Fig. 6: Structural equivalence
Coms  3(x)P[a(x).Q>P[Q
Trzn if M=Mthen P else Q —P
Euse it M=Nthen P else Q —Q

for any ground terms M and N
suchthat ¥ |-/M=N

Fig. 7: Internal reduction

LLif AlathenBla
2.if A" A then B—"B and A' R B for some B’
3. C[A]R C[B] for all closing evaluation contexts C[_].

MECHANIZED PROOF TOOL PROVERIF

ProVerif is a mechanized cryptographic protocol
verifier based on a representation of the protocol by
Horn clauses or applied PI calculus. Tt can handle
many different cryptograplc primitives, including
shared- and public-key cryptography (encryption and
signatures), hash functions and Deffie-Hellman key
agreements, specified both as rewrite rules and as
equations. Tt can also deal with an unbounded number of
sesslons of the protocol (even in parallel) and an
unbounded message space. When ProVerif cannot prove
a property, it can recomstruct an attack, that is, an
execution trace of the protocol that falsifies the desired
property. ProVerif can prove the following properties:
secrecy, authentication  and  more  generally
correspondence properties, strong secrecy, equivalences
between processes that differ only by terms. ProVerif has
been tested on protocols of the literature with very
encouraging results (http: //www. proverif ens.fr/proverif-
users.html). Recent research came up with an abstraction
of zero-knowledge proofs, a primitive heavily used
within electronic voting protocols such as Juels ef al.
(2005), Meng et al., (2010a) and Clarkson et al. (2008)
protocols that 1s accessible to an mechanized proof
using ProVerif (Backes et al., 2008a; Gerling et al., 2008,
Meng et al., 2010c).

ProVerif in Fig. 8 is for the proof of trace-based
and observational

security properties equivalence.

Since, the security definitions for basic properties and

Security protocols:
Applied Pi calculus + cryptography

Security properties to prove:
Security, receipt-frecness, coercion-resistance,..

h 4

| Automatic translator |

A 4

| Horn clauses

Derivability queries |

| Resolution with selection |

Fig. 8: Mechamzed proof tool ProVerif (Blanchet, 2008)
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expanded properties including receipt-freeness and
coercion-resistance for Backes et al (2008b) model
heavily rely on observational equivalences, ProVerif is the
only tool for our purpese of an mechanized proof of
Acquisti protocol. Tnspired by study of Backes et al.
(2008a) and Gerling et al. (2008), we use it to mechanized

prove Acquisti protocol.
BACKES ET AL. (2008a) MODEL

Here, we describes Backes et al. (2008a) model used
to mechanized prove Acquisti protocol. Backes et al.
(2008a) model formalize key properties mcluding the
coerclon-resistance

soundness, receipt-freeness and

in remote intermet voting protocol with applied PI
calculus. Backes et ., 2008a model maimnly model the
soundness, receipt-freeness and coercion-resistance.
In Backes et al. (2008a) model the voter are classified
three

voter and ad-hoc voter. Honest voter are issued an

mnto types of wvoter: honest voter, corrupted
dentity by an issuer authority and behave according

to the protocol specification. Corrupted voter will
register and then simply output all theiwr registration
credentials on a public channel, thus the coercer and

vote buyer can impersonate him in order to mount

any sort of attack. Ad-hoc voters can behave
arbitrarily; they do not necessarily follow the protocol,
but are also not necessarily corrupted. In the

following section we first introduce the soundness
mncluding malterability, eligibility and unreusability, then
receipt-freeness and coercion-resistance in Backes et al.
(2008a) model.

Soundness:

Informal definition: Tn the study (Backes et al.,
2008a), soundness is typically consists of the
following three separate properties:

¢ TInalterability: No one can change anyone else’s

vote
Eligibility: Only eligible voters are able to vote
Unreusability: Every voter can vote only once

Backes et al. (2008a) model formalizes the definmition
of soundness with the events including beginvote(id,v),
endvote(v), startid(id) and startcorid(id). The events in
the soundness property are also used later in the modeled
processes. beginvote(id, v) starts the voting phase for a
voter with id and the intention to vote for v whereas
endvote(v) 1s the tallying of this vote. startid(id) and
startcorid(id) indicate the start of the registration phase
for an eligible voter or an corrupted voter with id.

Formal definition: A trace t guarantees
soundness if and only if the following conditions
hold in Fig. 9

Condition la and b models the malterability and
eligibility, respectively. This is done through requiring
that every counted vote s either a vote casted by an
eligible voter or a corrupted voter. In order to achieve
unreusability it has to be assured that the matching
between endvote and beginvote(id, v) is injective. This
15 enswed by Conditon la m combination with
condition 2.

Receipt-freeness:

Informal definition: The voter can not produce a
receipt to prove that he votes a special ballot. Its
purpose is to protect against vote buying. This
definition thus refers to an attacker that does not
try to vote by impersonating the voter, but just
tries to get a proof that the voter voted in a special
way

Formal definition: An election context S 1s
receipt-freeness if there exists a plain process V'
such that in Fig. 10

(b) or t, =t':stardcorid(id) : t" and t'

and startcorid(id) do not accur int, :: t,

1. for any t,,t,,v such that t = t, ::endvote(v) :: t,, there exists id,t',t",t" such that :
(a) t, =t':stardid(id):t":: beginvote(id, v):t" and t' = t":: t": t, guarantees soundness;

=t tf guarantees soundness

2. for any t,,t,,id such that t=t, :: startid(id) : t, ort=t, ::stardcorid(id)::t,, the events startid (id)

An annotated election process EP guarantees soundness if and only if all its possible traces guarantee soundness.

Fig. 9: Formal defimition of soundness
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2.8 VRO ()| V,(v)

Vi | sV

Lve(le(x)[V)=letx, =iin V”g[let X, =v'inV™

Vi (v)

Vf““[let x,€¥in V“’“ﬂ

A ]

Fig. 10: Formal definition of receipt-freeness

Condition 1 models that the voter V' does not only
vote v' as a regular voter, but additionally uses V™ to
generate fake secrets, casts an extra vote using them and
provides a receipt of this invalid voting. Condition 2 deal
with that an additional voter k that votes with fake
registration secrets in case the voter 1 complies with the
request of the coercer and simply abstains if i cheats the
vote buyer by casting a vote with fake secrets.

Coercion-resistances:

Informal definition: A coercion-resistant voting
protocol should offer not only receipt-freeness,
but also defense against randomization, forced-
abstention and simulation attacks

Receipt-freeness: The voter can not produce a
recelpt to prove that he votes a special ballot
Tmmunity to randomization attack: The idea is for an
attacker to coerce a voter by requiring that she
submit randomly composed balloting material. The
effect of the attack is to nullify the choice of the
voter

Tmmunity to forced-abstention attack: This is an
attack related to the previous one based on
randomization. In this case, the attacker coerces a
voter by demanding that she refrain from voting
Immunity to simulation attack: An attacker coerce
voters into divulging private keys or buying private
keys from voters and then simulating these voters at
will, i.e., voting on their behalf

The formalization that encompasses all properties
except randomization attacks depicted below is taken from
Backes et ¢l. (2008a) model.

In order to formalize coercion-resistance, the process
called Extractor 1s introduced. Extractor plays an important
role i formalization of coercion-resistance, which extracts
the vote the coercer casts on behalf of Extractor and
tallies 1t directly. Extractor depends on the construction of
the particular electronic voting protocol and has to be
provided by the user.

Definition of Extractor: A context Er®* is an
Extractor if and only if:
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EpFo*= let x, =k in V™ [vﬁ‘l.(cl (x)p ‘!c:é (¥)P, ‘C[if ze ¥ then [ ]])J

For some plain processes P;, P, and a sequential context C such that
¢, ¢; &fn(P)uin(P,)in(C), z € captured(C), all inputs and outputs

in B, P,, and C occur on the private channels in m, and such channels

are never output.

The channels ¢, and ¢, are the channels shared by
the extractor with the coerced voter and the tallying
authority, respectively. If the coercer casts a vote, then
the variable z should hold this vote. The context C is
required to be sequential so it does not contain any
replications, which means that:

Eibﬂz B4 [@(;QJ

can tally at most one vote.

Formal definition: An election context S guarantees
coercion-resistance if there exist channels ¢, ¢, and
¢, a sequential process V™°, an Extractor E*%* and
an election context S, such that in Fig. 11

In condition 1 (hypothesis) a modified election
context s' is used that only differs from s in that the
tallying authority additionally outputs messages on the
channel ¢, shared with Extractor. In condition 2 the left
side process contains the voter V; that is in accordance
with the orders of the coercer, munning in parallel with the
voter V, casting a vote v' and the process E*#*[0], that is
intuitively equivalent to a voter nullifying her vote. In the
right side election process the voter V, cheats the coercer
by providing him with fake registration secrets and then
votes v', the voter V, participates in the registration phase
and then abstamns and the extractor process:

Eibﬂz B4 [@(;QJ

tallies the vote the coercer casts on behalf of v, In
condition 3 if the cheated coercer abstains, then the
Extractor needs to abstain as well; In condition 4 if the
cheated coercer casts a valid vote using the fake
registration secrets he received from v, the Extractor
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such that S = S"[A‘[ ]], S'= vcl,cz.S”[A'

a S,[mea(c,cl)

Vi(v)

Eio [0]} - S;|:Viﬂheat(c,cl) (V')

where v'< v is a valid vote;

3.ves [! c (X) \/:Chea"[':ﬂl) (v')

ahs
VJ

and X mU =2 then vc.S'{P v (v

abs
Vj

1. there exist an election context S" and two authority process A, A'

[ ]} and ch.(A‘!c2 (X))

G O | BN

4. let P = c(x).let X, =vin V™ {%} vev,u= captured(V”g),

s [@(z)ﬂ = c.S'[P

5. S[\fﬂ‘“‘“g] = VC (10 (x))|S[‘v’1 (v) ], where v is a valid vote.

A;

PP R
E¢ |:vat.es

al

V;\bs } :

V‘cheat(c,cl) (V ,) \fr_‘abs

B )|

Fig. 11: Formal definition of coercion-resistance

needs to tally precisely this vote. In condition 5 an
additional restriction 15 mtroduced that justifies the
abstraction of the third voter by the Extractor: votes with
invalid registration secrets are silently discarded by the
tallying authority. If this was not the case a coercer could
easily distinguish real from fake registration secrets.

ACQUISTI PROTOCOL

Acquisti (2004) protocol promises that it can protect
voters’ privacy and achieves universal verifiability,
receipt-freeness and coercion-resistance without ad hoc
physical assumptions or procedural constraints. Tt mainly
applies threshold Paillier cryptosystem (Paillier, 1999),
bulletin board that is a public broadcast channel with
memory where a party may write information that any
party may read, Mix net that guarantees privacy is a
distributed protocol that takes as input a set of messages
and returns an output consisting of the re-encrypted
messages permuted according to a secret function
(Chaum, 1981), proof of knowledge that two ciphertexts
are encryption of the same plamtext (Baudron ef af., 2001),
designated verifier Proof of knowledge (Jakobsson ef al.,
1996; Hirt and Sako, 2000). Acquisti assumes that the
private key is private and that an attacker cannot control
every possible communication between the voter and an
authority.

In Acquisti protocol there are five entities:
registration authority, issue authority, bulletin board,
voters, tallying authority. Registration authority 1s
responsible for authenticating the voters. Issue authority
takes charge of issuing the related key and credentials.
Voters register for voting, get their credentials and posta
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Y

Issue authority

21j0A

fuoge SuiAjre],
Ayuoe uopeRsEay

Bulltein board

Fig. 12: Model of Acquisti protocol

vote. Tallying authority is responsible for tallying ballots.
Model of Acquisti protocol 1s described m Fig. 12.
Acquisti protocol consists of preparation phase,
voting phase and tallying phase. In preparation phase the
related keys and ballot are generated. Issuer authority
creates the voting credential shares and posts copies of
the shares of credentials encrypted with Paillier
cryptosystem to a bulletin board. The same credential
shares encrypted with different Paillier public keys and
attach a designated verifier proof of the equivalence
between the encrypted share and the one the voter has
received to its message are also provided to voters. Issuer
authority also creates the ballots shares which are
encrypted with the two different Paillier public keys. Both
the sets of encrypted ballots shares are posted on the
bulletin board together with zero-knowledge proofs that
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( Tssuer suthority ) (Registmtionauﬂwﬁty) ( Voters ) ( Bulletin board ) -

SK.', VK, VK, E° (b)E(b) —
8K, VK, VK, SKS, VK, VK
> PKPKY|PK] K, VK', VK.
> SK/, VK®, VK
Preparation 1 o
phass >
(Eu)) SKa
>
Voting
p
Tallying Mixing, eliminate
phase duplicate vote, tally vote

-
%

Fig. 13: The structure of message of Acquisti protocol

each pair of ciphertexts are encryptions of the same ballot
share and are then signed by issuer Authority. In voting
phase the voter vote lus favor ballot and post it to bulletin
board. Each voter multiplies the shares she has received
from issuer authority together with the encrypted shares
of the ballot. Because of the homomorphic properties of
Paillier cryptosystems, the resulting ciphertext mcludes
the sum of those shares and the ballot’s shares. The
resulting ciphertext is sent to the bulletin board. Tn the last
phase, tallying phase, the tallying authority tallies the
ballot and publishes the result in bulletin board. The

structure of message 1s described in Fig. 13.

Preparation phase: Every issue authority A,(i = 1
creates / random numbers ¢ as ¢, representing shares of
credentials, for each eligible voter veter(/ = 1......[). For
each ¢, A performs two operations: first, it encrypts ¢
using PK” and appropriate secret randomization, signs the
resulting ciphertext with SK,° and publishes it cn bulletin
board on a row publicly reserved for the shares of
credential of voter:

vy (Ec (c,,J))SKA)

SK represents the signature of authority A, Second, A;
also encrypts c; using PK’ and appropriate secret
randomization, without signing it, but attaching to it a
designated verifier proof DVP,, of equality of plamntexts
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E(c;;) and EV(c;;). The proof is designated to be verifiable
only by voter. A; encrypts this second message with
voter;"s public key and sends it:

voter, :E” (Ev (c,;).DVP, )

Evu terj
key.

represents RSA encryption under voter;’s public

Voting phase: For each encrypted share of credential she
receives, voter; verifies the designated verifier proof of
equality between E'(c,) and the corresponding E(c,)
that has been signed and published in her reserved area
of bulletin board. Upon successful verification, she
multiplies together the shares E"(c,;).

|

C, 1s the sum of the various shares of credentials.
voter;. Voter chooses the ballot shares E(b}),—.E" (b)),
generates:

IT (E"(c.)=E"

jejiicd, s

2 Ci,J

jejit, s

J:E"(cj)

X b,

E'(C)E’ (Bj)_E"[ e+ J—EV {C,+BH
i=l,- s i=l,---,8

and sends E°(E'(C, +B))) to bulletin beard.
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Tallying phase: After the voting time expires, all ballots
on bulletin board posted by allegedly eligible voters are
mixed by the tallying authorities. The shares of credentials
posted by the registration authorities are also combined
and then mixed. Tallying authorities thus obtain two
lists: a list of encrypted, credentials the
registration  authorities had oniginally
posted on the bulletin board; and a set of encrypted,

mixed
themselves

mixed sums of credentials and ballots, posted on the
bulletin board by the voters. The two lists have been
encrypted with different Paillier public parameters. Using
threshold protocols for the corresponding sets of private
keys, the tallying authorities decrypt the elements n
each list and then compare them through a search
algorithm and publish the tallying result on bulletin
board.

MODELING ACQUISTI PROTOCOL WITH
APPLIED PI CALCULUS

Function and equational theory: The function and
equational theory is introduced in this section. We use
applied PI calculus to model Acquisti protocol. We model
cryptography in a Dolev-Yao model as being perfect.
Figure 14 describes the functions and Fig. 15 describes
the equational theory m Acquisti protocol.

The probabilistic public key cryptosystem, for
example Paillier cryptosystem, 1s modeled with decryption
algorithm pPKdec(x,PR) and encryption algorithm
pPKenc(x, PUr). pPKdec(x, PR) decrypt the ciphertext
x x with private key PR. pPKenc(x, PU, 1) encrypt the plain
text x with public key PU and random number r. The
determimstic public key encryption scheme 1s expressed

Fun pPKdec(x,PR)

pPKenc (x,PU,r)
PKdec(x,PR)

PK(x)

PKenc(x,PU)

sign (x,PR)

decsign (x,PU)
TpPKsubdec(x, . PR;,VK;)
checkciphertext (x,.x,)
equals(x,y)

Fun
Fun
Fun
Fun
Fun
Fun
Fun
Fun

Fun

Fun add(x,¥)

Fun TpPchc(xl,---,xz)

Fun TPKdec(x,,---,x%,)

Fun VK(x)

Fun verifysign(x,PU)

Fun projection, (x)

Fun SelfBlinding (x,r)

Fun TPKsubdec(x;, PR, VK;)
Fun SK(x)

Fig. 14: Functions

equation
equation  equals(x,x) = tnie.
equation
equation
equation
equation

equation
equation
equation TpPKdec[

equation

equation

TPKdec[

deesign {sign (x,PR)} =
verifysign (sign (x,PR), x ) =true.

CheckNZDVPp(DVPsign (x,PR),VKy,x) = frue.

X.

pPKdec (SelfBlinding(pPKenc (x,PUy, r) .5 ),PRy) =X.
add{projection, (x),projection, {x)) = x.

add ( projection, (x},projection, (x)) = x.
TpPchc(TpPKenc (x,PUy, r) ,PRY) =%
TpPKsubdec(TpPKenc(x,PUy,rl),PR,,VKl),
TpPKsubdec{ TpPKenc(x,PU 1, ), PR, VK, )
TPKdec( TPKenc(x.PU, ).PR, )= x
TPKsubdec( TPKenc (x,PU, ).PR VK, ),

TPKsubdec(TpPKenc(x,PU, },PR,, VK ;)

}_x

|

Fig. 15: Equational theory
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by decryption algorithm PKdne(x,PR) and encryption
algorithm Pkenc(x,PU). PKdne(x,PR) decrypt the ciphertext
x with private key PR. PKenc(x,PU) encrypt the plaintext
x with public key PU. The digital signature 1s modeled as
being signature with message recovery, 1.¢., the signature
itself contains the signed message which can be extracted
using the function. The digital signature algorithm
includes the generation signature algorithm sign(x, PR)
sign the message x with private key PR and the
verification algorithm verifysign(x, PU) verify the digital
signature x with public key PU. decsign(x, PU) recover the
message from the digital signature x with public key P
The probabilistic threshold public key share decryption
algorithm TpPKsubdec(x;, Pr, VK;) decrypt the secret
share x, with private key PR, and verification key VK. The
probabilistic threshold algorithm
TpPKdec(x,,....x; ) recovers x from x,,...,%,. The determimstic
threshold public key share decryption algorithm
TPKsubdec(x,, PR, VK,) decrypt the secret share x; with
private key PR, and verification key VK. The deterministic
threshold combining algorithm TPKdec(x,,...,x,) means
that recover x from x,,..%x,. The projection function
projection;(x) generated the ith share from the formatted
message X. The self blinding function SeltBlinding(x,r)

blinds message x with r. The add function add(x,y) add x

combining

and y. checkeiphertext(x,,x;) verify the two ciphertext x,
and x, generated with the same plaintext. SK(x) PK(x)
VK(x) generated the secret key, public key
verification key of x. equals(x,y) checks whether x 15 equal
to y or not.

The basic equational theory 1s described in Fig. 15.
The threshold decryption and combining algorithm are
mntroduced.

The equational theory also contains and equational
rules for abstractly reasoning about the knowledge proof

and

that two ciphertexts are encryption of the same plaintext
which 1s modeled 1 Fig. 16 and used in the voting phase
and tallying phase. In the voting phase the voter need to
verify the equivalence between the encrypted share and
the one the voter has received to its message are also
provided to itself. In the tallying phase the tally authority
need to check the two lists: a list of encrypted, mixed
credentials the registration authorities themselves had
originally posted on the bulletin board; and a set of
encrypted, mixed sums of credentials and ballots, posted
on the bulletin board by the voters. It modeled as:

checkciphertext (pPKenc(xl, PU..5), pPKenc(x, ,PUz,rz)): true

the
ciphertext generated with the public key PU_ and random
number 1, the other is the ciphertext generated with the
public key PU, and random number r,, are the same
plaintext x,.

It can verify two ciphertext, one is the

Designated verifier proofs modeled in Fig. 17 in the
applied PI calculus (Backes et @f., 2008b) 1s also contained
in the equational theory and equational rules. During the
registration phase, the voter acquires a private credential
for voting. For this he contacts each of the registration
authority and asks them for a share of the private
credential. In order for a registration authority to prove
the correctness of the share credential, a designated
verifier proof i1s used. Designated verifier proof can
convince only the voter of the correctness of the share
credential and nobody else. Tn particular the voter should
be able to generate a fake proof of this fact, e.g., using his
secret key.

CheckNZDVPp (DVPsing (x,PR), VK, x) = ture

equation checkciphertext (pPKenc (){1,PUy,r1 ) .pPKenc(x, ,PU,, rg)) = Imc.‘

Fig. 16: Model of knowledge proof that two ciphertexts are encryption of the same plaintext

Public,(ZK, ;(N.M, F)) = N,.
Formula(ZK, ,(N,M, F)) = F.

pelLj]

F=Fv [Bjﬂ = ChCCk(U‘Hl’ B]+2)]

Ver, (F,ZK, ;(N,M, F)) = true_ iff [ F{ﬁ/&}{ﬁ/ﬁ}:mp [ F is an (i, jj— formula]

ZI<1+l,_|+2 ((N1>'">N1> N1+1)>(M15' ",MJ),m,VKy,F‘)
CheckNZDVPp (DVPsign (m,PR),VKy,m‘ ) = true iff equals(check(am,BJ+2),BJ+1 ) = true

Fig. 17: Model of designated verifier proofs
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(

Acquisti protocol £ new C;new V:new S;
new keyVinew keyl;new keyl,;
new chVR;new chRI;new chRI,;
!voter|!corrupted voter|!tallying authority|
lissuer authority, |!issuer authority, |'registration authority]

Fig. 18: Main process

voter £
in(chVR, id); startid(id);
in(chVR kencNZDVP,);
in(chVR kencNZDVP, );
let
let

let cred = [ ] Public, (NZDVP) in

i=1,2
let vote = ] | vencballot! in
i=1,2

let result = credx vote in

new T,

out (pub,TpPKenc(result,PK(S),r));

NZDVP, = PKdec[kencNZDVP,,SK(keyV)] in
NZDVP, = PKdec[kencNZDVP,,SK(keyV)] in
if CheckNZDVPp(DVPsign(Public3(NZDVPI),SK(kcyV)),VK(keyV
if CheckNZDVPp(DVPsign(Public3(NZDVP2),SK(keyV)),VK(keyV
if checkciphertext(Publicl (NZD‘\JPI),decsign(Publi(:2 {(NZDVP, ))):tme then
if checkciphertext(Publicl (NZDVPE),decsign(Publicg(NZDVPZ))): true then

).Public, (NZDVE,)]  then
).Public; (NZDVP, )} then

Fig. 19: Voter process

corruptedvoter 2
in{chVR, id);startcorid(id);
in{chVR, kencNZDVP, );
in{chVR, kencNZDVE, );
let
let

NZDVP, = PKdec[kencNZDVP,,SK(keyV)] in
NZDVP, = PKdec[kencNZDVP, SK(keyV)| in
it CheckNZDVPp{DVPsign (Public, (NZDVP,),SK(keyV}), VK (keyV),Public, (NZDVP,))  then
it CheckNZDVPp({DVPsign (Public, (NZDVP, },SK keyV)), VK (keyV),Public, (NZDVE,))  then
out(pub, (Public, (NZDVE, ), Public, (NZDVE, )) ;

Fig. 20: Corrupted voter process

Processes: The complete formal model of Acquisti
protocol m applied PI calculus 1s given in Fig. 18-23
report the basic process include main process, voter
process,  corrupted process, registration
authority process, ssuer  authority process  and
tallying authority process forming our of the model of
Acquisti protocol. Figure 24-29 offer additional and
modified processes for the analysis
resistance.

voter

of coercion-
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The main process mn Fig. 18 sets up private channels
chVR, chRI,, chRI, and specifies how the processes are
combined in parallel. chVR is the private channel between
voter and registration authority. ¢chRI, and chRI, are the
private chammel between registration authority and issuer
authority. At the same time the main process generates
the key parameters ¢ for credentials, V for vote, S for
non-homomorphic cryptosystem, keyV for voter and key1
for 1ssuer authority.
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registration authority =
new id; newid(id);
out(pub,id);
out(chVR,id);
new cred;
out{chRI,, (id, cred));
out(chRI,,(id, cred));
in(chRI,,{id, cred, });
in(chRI,, (id,cred,));
NEW I;[EW T;
out(chVR,PKenc{ NZDVE, PK (keyV)) };
out (chVR,PKenc{ NZDVP,,PK (keyV)));

NZDVP = 7K cred,. 1,1, C. V. DVPsign{m,SK(keyV)); pPKenc{cred . PK(V).1,),
1T sign{pPKenc(cred,,PK(C).r,).SK,(C)),m, VK (keyV);

Fig. 21: Registration authority process

issuer authority,, , =
new rinew r,;

pPKen(projection, (ballot"), PK(C).1; ),
out| pub,| sign
pPKenc(projectioni {ballot*), PK(V),1, )

SK (keylj)},zkpe

in(chRI,, (id,cred));
out(chRI,{id, c (cred)));
out (pub,sign [pPKene(c, (cred), PK{C). 1, ),8K, (C)]);

Fig. 22: Issuer authority process

tallying authority =
let  cenccred = H TpPKdec(projection, {cred), PK(C),r) in

i=1,2
let  bcencered = SelfBlinding(cencered, PK(C)) in
in(pub,res);
let  venccredvote = TpPKdec(res,SK(8))  in
let  bvenccredvote = SelfBlinding(venccredvote, PK(V)) in
let  cenchallot' = H TpPKenc{projection, (ballot"),PK(C),r)  in

i=12
let  test = beencered = cenchballot'  in

if true = checkciphertext(test, bvenccredvote) then
endvote(ballot®),

Fig. 23: Tallying authority process

Voter process is modeled in applied PT calculus in  verify the equivalence between the encrypted share:
Fig. 19. Using Paillier encryption, each voter get the Public; (NZDVP,), decsign (Public, (NZCVP,)) and
shares ciphertext kVenccred, and kVenccred from the one Public, (NZDVP,), decsign (Public, (NZCVP,))
registration authority, then decrypt and get the the wvoter has received to 1its message are also
credentials venccred,, venccred, and the designated  provided to itself. The voter also gets the
verifier proof NZDVP;, and NZDVP, After that the encrypted shares venchallot, of the ballot, which
voter use CheckNZDVPpito verify NZDVP, and she has selected from the bulletin board He
NZDVP, The voter also use checkciphertest( ) to  multiplies:
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cheating voter =
in(chVR,id);
in (ch VR, kencNZDVP, );
in (chVR, kencNZDVP, );
let NZDVP, = PKdec(kencNZDVP,SK (keyV))
let NZDVP, = PKdec(kencNZDVP,,SK (keyV))
if  CheckNZDVPp(DVPsign(Public, (NZDVR,),

if CheckNZDVPp(DVP51gn Public, (NZDVE, ),
new fakecred;new fakecred,;
out(c,(fakccrcdl,fakecredz));

out(chve,(fakecrcdl,fakccred2));l
let cred = [ ] Public, (NZDVE,) in

=12

if  checkciphertext
if  checkciphertext

let vote = | [ vencballot} in

i=12
let result = credx vote in
new r;

out (pub,TpPK ene (result,PK(S),r));

K{
Public, (NZDVP, ) decsign (Public, (NZDVE, )) ) = true  then
Public, (NZDVP, ),deesign (Public, (NZDVP. ))) truc then

in
in
SK(keyV)) K(keyV )Publicz(NZD\f’Pl)) then

SK (keyV)), VK (keyV),Public, (NZDVE, )] then

Fig. 24: Cheating voter process

coerced voter =
in (chVR, id) R
in{chVR, kencNZDVP, );
in ( chVR, kencNZDVP, ) R
let NZDVP, = PKdec(kencNZDVP,,SK (keyV))
let NZDVP, = PKdec(kencNZDVP,, SK (keyV))
if  CheckNZDVPp (DVPsign (Publi(:3 (NZDVP,),

if  CheckNZDVPp (DVPsign (Pub]ic3 (NZDVP,),

out(c, (Public, (NZDVP, ), Public, (NZDVE, )));
out chve, (Public, (NZDVP, ). Public, (NZDVP, }}).

if checkciphertext(Publicl(NZDVR),decsign (Public NZDVP, )) true then
if checkciphertext(Publicl(NZDVP ).decsign (Public, (NZDVP ))): true then

in
in
SK (keyV)), VK (keyV),Public, (NZDVE,)) - then
SK (keyV)), VK (keyV).Public, (NZDVP, )} then

Fig. 25: Coerced voter process

cred = [ ] vencered, and vote = | [ vencballot}

i=1,2 i=1,2

Because of the homomorphic properties of Paillier
cryptosystems, the resulting ciphertext result includes the
sum of credential shares and the ballot’s shares. The
resulting ciphertext TpPKenc(result, PK(S), r) 1s sent to
the bulletin board.
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Corrupted voters process is modeled in Fig. 20. The
corrupted voter will register and get his secret credentials
shares kVenccred, and kVenccred from registration
authonty, then decrypt and get the credentials vencered,,
vencered, proof of the equivalence between the encrypted
share 1t has posted on the bulletin board and the one it
will sent to the voter. NZDVP, and NZDVP,, after that, he
simply output all their registration secrets venccred, and
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modified tallying authority =

i=1,2
let
in(pub,res);
let
out{chTE, venccredvote);
let

let
i=1,2

let
if

let cencered= HTpPchc(projection J[Lered), PK(C)r) in

beenccred = SelfBlinding(cencered, PK(C))
venceredvote = TpPKdec(res,SK(S))

bvenccredvote = SelfBlinding(venccredvote, PK(V))
cencballot® = H TpPKenc(projection, (ballot"), PK(C),r)

test = bcencered < cencballot
true = checkciphertext(test, bvenccredvote)

in

in

in

in
then

Fig. 26: Modified tallying authority process

dbstained voter =
in{chVR.id};
in{chVR,kencNZDVP, ),
in{chVR, kencNZDVP, };

Fig. 27: Abstamed voter process

extractor[]2
in{chVR,id),
in{chVR, kencNZDVP,),
in(chVR, kencNZDVP, ),

new a,new b;

{lin(chTE, venceredvote),

i=1,2

1=1,2

in{a, (fakecred, , fakecred, ),
let vote' :Hvencballotf in

(in(chve,( fakecred, , fakecred, )), lout (a,(i‘"akecred1 ,fakecred, )))|

let credzl_[fakecred1 in

if  venccredvote = votex cred then
out(b,vote"))|

(in(b, z),

if zc ballot' then [])

Fig. 28: Extractor process

venccred, on a public channel, so that the attacker can
umpersonate them in order to mount any sort of attack.
The registration authority process 1s modeled
Fig. 21. The registration authority generate the voters id,
then get the secret credentials shares cred, and cred,
After that the registration authority creates designated
verifier proof that the proof of the equivalence between
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the encrypted share it has posted on the bulletin board
and the one it will sent to the voter NZDVP, and NZDVP,.

The 1ssuer authority 1 modeled in Fig. 22. The 1ssuer
authorities get the shares of ballot by projection; (ballot")
and send sign[pPKenc(c(cred, PK(C), r,, SKi(C)] which is
encrypted with a set of Paillier public parameters by the
public channel pub.
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Acquisti — coercion —resistan cel 2 new Cinew Vonew S
new keyVinew keyl :new keyl,;
new chVR;new chRI;new chRI,;new chVE;new chTE;
I'voter | ! corrupted voter | Imodified tallying authority |
lissuer authority, | lissuer authority, | lregistration authority |

coerced voter | voter(v,) | extractor(0)

Fig. 29: Acquisti-coercion-resistance2 process

Acquisti — coercion - resistau ce2 2 new Cinew Vinew S
new keyV;new kevl;new keyl,;
new chVR;new chRI;new chRI;;new chVE;new chTE;
!voter | lcormupted voter | ! modified tallying authority|
lissuer authority, | lissuer authority, | !registration authority |
cheating voter | abstained voter | extractor(out(chvote,z))

Fig. 30: Acquisti-coercion-resistance2 process

Tallying authority process i1s modeled in Fig. 23.
After the voting time expires, the tallying authorities
get the all ballots on bulletin board posted by
allegedly eligible voters and then mixed it by
SelfBlinding(cencered, PK(C)). The shares of credentials
posted by the registration authorities are also combined
and then mixed SelfBlinding(venccredvote, PK(V)).
Tallying authorities thus obtain two lists: a list bcencered
of encrypted, mixed credentials the registration authorities
themselves had originally posted on the bulletin board;
and a set cencballot’ of encrypted, mixed sums of
credentials and ballots, posted on the bulletin board by
the voters. The two lists have been encrypted with
different Paillier public parameters. Using threshold
protocols for the corresponding sets of private keys, the
tallying authorities decrypt the elements in each list by
checkeiphertext(test, bvenccredvote) and then compare
them through a search algorithm and publish the tallying
result on bulletin board.

According to the definition coerced-resistance of
Backes et al. (2008a) i order to analyze coercion-
resistance of Acquisti protocol, the processes including
cheating voter process, coerced voter process, modified
tallying authority process, abstained voter process,
extractor process, Acquisti-coercion-resistancel process
and Acquisti-coercion-resistance? process, are needed.
The faking strategy of the cheating voter consists of
generating a fake credential and sending it to the coercer.
To generate the fake credential fakecred, and fakecred,,
the voter construct a valid designated verifier proof
NZDVP that causes this fake share to appear real to the
coercer in Fig. 24. In Fig. 25 the coerced voter sends
his genume (Public, (NZDVP,), Public, (NZDVP,)) and
(Public, (NZDVP,), Public, (NZDVP,)) to the coercer.
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In Fig. 26 the modified tallying authority sends the
credentials and vote by chTE to the extractor process.
The difference between the previous tallying authority
process in Fig. 23 and modified tallying authority process
1s that the tallying authority process in Fig. 23 does not
publish the credentials and vote. In Fig. 27 the abstained
voter receives the related information and give up lus
vote. The extractor process in Fig. 28 can identify this
fake designated verifier proof as being a coerced vote.
Notice, that the modified tallying authority process in
Fig. 26 shares a private chammel chTE with the
extractor aprivate channel c¢hVE with voter. The
processes Acquisti-coercion-resistancel m Fig. 29 and
Acquisti-coercion-resistance? in Fig. 30 need to be
observationally equivalent in order to satisfy the
definition coercion resistance of Backes et al. (2008a) and
to be able to mechanizedly prove this property of the
protocol.

MECHANIZED PROOF OF ACQUISTI
PROTOCOL WITH PROVERIF

ProVerif can take two formats as mput. The first one
is in the form of Hom clauses (logic programming rules)
and applied PI calculus. The second one 13 in the form of
a process in an extension of the PT calculus (Abadi and
Blanchet, 2005). In both cases, the output of the system
is essentially the same.

In thus study we use an extension of the PI calculus
as the input of ProVerif. In order to prove the soundness
and coercion resistance in Acquisti protocol the applied
PT calculus model are needed to be translated into the
syntax of ProVerif and generated the ProVerif inputs in
extension of the PT calculus (Abadi and Blanchet, 2005).



Fig. 31: Function 1

Fig. 32: Function 2

Firstly the soundness of Acquisti protocol 1s proved
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fun  pPKenc/3. (* probabilistic public key encryption )

fun  pPKdec/2.(* probabilistic public key decryption *)

fun  PKenc/2.(# deterministic publickey encryption =)

fun  PKdec/2.(* deterministic public key decryption *)

fun  check/2.

fun  zkwver/1.

fun  publicl/l.

fun  zk/2.

data  true/0.

fun  sign/2.(+ digital signature algorithm with the private key *)
(*recover the message from the digital signature with public key #)
fun  decsign/2.

fun  verifysign/2.(xverify the digital signature with public key *)
(+ deterministic threshold public key share decryption algorithm *)
fun  TPKsubdec/3.

{* probabilistic threshold public key share decryption algorithm *)
fun  TpPKsubdec/3.

fun  TPKdee 2.(*deteministic threshold combining algorithm *)
fun  TPKene/2.

fun  TpPKene/3.

fun  TpPKdee/ 2.(= probabilistic threshold combining algorithm =)

fun  SK/1.(* algorithm of generating the private key +)

fun  VK/1.(* algorithm of generating the verification key *)

fun  PK/l.(*algorithm of generating the public key *)
*verification of knowledge proof that two

[ciphertcxts are encryption of the same plaintext *}

fun checkciphertext/ 4.

fun  add/2.(x add*)

fun  multi/ 2. (*multiply *)

fin  equals/2.(*equation %)

fun selfBlinding/ 2.(* self blinding *)

fun projection/1. (= projection function %)

fun projection 2/1. (* projection function *)

nalterability, eligibility and unbreusability for

by ProVerif. In order to prove the soundness property,
according to the definition of Backes et al. (2008a) model,
the soundness comnsists of inalterability(condition 1la),
ligibility(condition 1b) and non-reusability(condition la
and condition 2). Figure 31-40 give the inputs in extension
of the PI calculus (Abadi and Blanchet, 2005) of
verification of soundness in ProVerif. The analysis was
performed by ProVernf and succeeded n Fig. 41. Bad 1s
not derivable shows that observational equivalence is
true. As a result, Acquisti protocol is proved to guarantee
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unbounded mumber of honest voters and an unbounded
number of corrupted participants.

The proof of coercion-resistance in Acquisti protocol
15 also fimished by ProVenf. According to defimition of
coercion-resistance in Backes et ol (2008a) model, the
coercion-resistance is composed of one hypothesis and
four conditions. The hypothesis describes that election
context S' that only differs from S m that the tallying
authority additionally outputs messages on the channel
¢, shared with Extractor.
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equation equals{x.x )=true.
pPKdec(pPKenc (x,PK(y),2).5K (¥ ))

PKdec(PKenc {(x.PK{y).SK (y))=x

equation
equation
equation decsign (sign (x,SK(y)),PK (y))=x
verifysign(sign (x.8K(¥)) ,x):tmc.
check(sign (x,y), VK (¥))=x

add (projectionl(x),projectionZ(x

equation
equation
equation ))=x
)=

TPKdec(TPKenc (x,PK (y)) SK (y))=x.

equation add (projectionl(x) projection] (x
equation
cquation publicl(zk{x,y)}=y.

equation multi(TpPKenc (a,PK {(¥) ,r) .TpPKenc

——

equation checkeiphertext (TpPKenc (x,PK (v)rl

\_1

TPKsubdec(TPKenc (x,PK

equation TPKdec

)
TPKsubdec(TPKenc (x,PK (y))
TPKsubdec(TPKenc (x,PK (y))

equation TPKdec

equation TpPKdec

TpPKsubdec| TpPKenc

equation TpPKdec

(
(
(

equation zkver| zk| (credl,cred2,sign(m,voter)),

b,PK (y) ,z))=TpPKenc (add(a,b) PK (y) ,r)).
TpPKenc(x PK (z), r2),y,z) =true.
pro_]ectlonl(SK

,projection2 (SK

TPKsubdec(TPKenc(x,PK(y)) Jprojection (SK
TpPKsubdec(TpPKenc(x PK(y).r1) pro_]ectlonl(SK y)),pro_]ectlonl V y)
TpPKsubdec{ TpPKenc(x,PK(y),r2) projection2
{(x.PK(y).r2) projection2
TpPKsubdec{ TpPKenc (x,PK(y).r1l pI’O_]CCth[‘ll(SK(y ,projcctionl VK ( y))

TpPKene(cred], PK (V) r1),
TpPKene(cred2, PK (V) r2),

)
)
pro_]ectlonZ(SK (¥) )
()

pro_]ectlonl VK (y)))

,pro_]ectlonZ V y

( )))]
,pro_]ectlonZ V (y))), .
(

pro_]ectlonl VK(y) )

(SK(¥)).projection2{ VK (y) )
(SK (). projection2{ VK (y}}),
) =X.

mm
PK (V),m, VK (vater)

Fig. 33: Equation

(*public channel =)
free pub.

private free chvote.
free va,vb.

free nl,.n2.

query evinj:ENDVOTE(x) {[

(=vater +)

evinj:BEGINVOTE(x,y)
evinj: STARTID(v)

let votechooser = out(chvote,va) | out(chvote,vb).

evinj:STARTCORID(z) |.

|

Fig. 34: Soundness-vote chooser

Condition 2 describes the special observational
equivalence between:

S.I:U courced (2.0,

UJ(V‘)‘E;‘*‘”[O]}
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S.[Vmat((; )( )‘V&bs

Ecm; [ orss <Z>]]
s '[v;”“““‘(”') [y (v

Y[z #[0] ]

contains the voter V| that is in accordance with the orders
of the coercer, running in parallel with the voter V, casting
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let voter=
New Nonce;
new noncel;
out (chVR,(nl,nonce));
out (chWI,(nl,noncel));

in (chVR,(ml,monce,ct));
let zkp=PKdec(ct, SK(voter))
if' zkver (zkp)=true then

new rl;new r2;
let encvote=multi

let ballot=multi (crcd,encvote
let res=PKenc{ballot,PK(S})
out (pub,res).

in (chVH, {=n2,=noncel ,id)) ;event STARTID (id);

in

let (enccredl,enccredz,:PK(V),m,vk)ﬁ)ublicl(ﬂ{p) in
if check (sign{m,voter),vk )=m then
let cred=multi(enccredl,enccredZ) in

in { chvote, vote);event BEGINVOTE (vote,id);

TpPKenc(projection] {(vote), PK{V),r1), _
in
TpPKene(projection2({ vote) PK (V ).12))

) in

in

Fig. 35: Soundness-voter

let corruptedvoter=
New 10Nce;
new noncel;

out(chVR,(nl,nonce));
out (chVIL(nl,noncel});

out ( pub,ct1).

in{chVIL(=n2,~noncel,id));event STARTCORID(id);
in ( chVR,(=n2,=nonce,ct 1)) :

Fig. 36: Soundness-corrupted voter

a vote v' and the process Ep}=*[0], that is intuitively
equivalent to a voter mullifying her vote. Tn:

eunld)]]

S,[V_ahaat(c,cl) ()

abs
Vj

E? [

the voter V, cheats the coercer by providing him with fake
registration secrets and then votes v', the voter V,
participates in the registration phase and then abstains
and the extractor process:

B (2]

tallies the vote the coercer casts on behalf of V.

Figure 31-33, 42-55 give the inputs in extension of
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the PI calculus (Abadi and Blanchet, 2005) of
verification of Condition 2 m ProVerif. The
result shows that the observational equivalence
betweern:

S,[-\f:cuexced[c,cl) VJ (V') Elil,cg,z [0]:|
and

S,[\lyjcheat(c,cl) (v

ahs
VJ

et

is satisfied in Fig. 56. Bad is not derivable shows that
observational equivalence is true.
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let tallying_authority=

new nonce;

out(chRT,(nl,noncc));

in (chRT,(=n2,=nonce,enccredl encered2));
in{pub,res);

let cencered=multi[enccred],encered?] in
let result=PKdec (res, SK (S)) in

new rl;new r2;

TpPKenc( projectionl{va),PK (C),rl),} "

let cencvotea=multi (
TpPKenc (pl’O_]eCthl‘l2( va

J.PK(C)
TpPKeiic prO_]CCth[‘ll(Va) PK(C).11),
let cencvoteb=multi in
)
let test1=multi(cencered,cencvotea) in
let test2=multi( cencered,cencvoteb) in
if true=checkciphertext(testl result,C,V) then event ENDVOTE(va) else
if tme:checkciphertext(test2,result,C,V) then event ENDVOTE (Vb).

Fig. 37: Soundness-tallying authority

let registration_authority=
in(chVR,(=nl,nonceV));
in(chRT,(=n1,nonceT));

NEW NONCe;

out (chlIR, (n1,nonce));
in(chlIR,(=n2,7nonce,id));
new cred;
let cred1=projectionl(cred) in
let cred?=projection2(cred) in

new rl;new r2;

out(chRT, (nl,nonceT,TpPKcnc(crcdl,PK (©) ,rl) ,TpPKenc(credZ,PK () ,r2)));

new m;new r3;new r4;

(crcdl,crcd2,sign (m,voter)),
TpPch(credl,PK(V),r3),
TpPKenc{cred2, PK(V),r4),
PK (V),m,VK (voter)

out| chVR,| n2,nonceV,PKenc| zk -PK ( voter)

Fig. 38: Soundness-registration authority

let issuer_authority=

in (chVH, (ml,nonce‘v’));
in (chlIR,(=n1,nonceR });
new id; event NEWID(id);
out (chVH, (n2,n0nceV,id));
out (chIIR, (nl,nonceR,id));
out (pub,id).

Fig. 39: Soundness-issuer authority
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process new C;new V;new S;
new voter;
new Al;new A2;
new chVR;
new chVII;
new chilR;
new chRT;
out (pub PK C))

(
out (pubPK{V});
out (pub,PK (8));
out (pub,PK ( voter));
out (pub,PK (A1));
out (pub,PK(Al));

[ !\.rotcrl ! corruptt?dvoter\ 'tallying_authority|! registration_authority}
[lissuer_authority|!votechooser

Fig. 40: Soundness process

¥ muind START 1D

sprauer i f e dswpeoues il 1, B

Fig. 41: The result of soundness

(cred,sign (m,votcr)) R
equation zkver| zk| [ TpPKenc(cred PK(V).r), | | [true.
PE(V),m,VK {voter)

Fig. 42: Coercion-resistance-condition2-additional equation

free pub,com.(* public channel®)

private free ¢.chvote,chTE, chVE, internall internal.
free va,vb.

free nl.n2.

(= voter =)

let votechooser = out (chvote,va)| out (chvote, vb)

Fig. 43: Coercion-resistance-condition2-vote chooser
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let voter=
in (chVILid);
new nonce;
out(chVR,(nl,nonce));
in (chVR, {=n2,=nonce, ct));
let zkp=PKdec (ct, SK (voter)) in
if zkver (zkp)=true then
let (mccredl,enccred2,=PK (V),m,vk)=public1 {zkp) in
if check (sign (m,voter),vk):m then
let credqnulti(enccredl,enccredz) in
in (chvote,vote);
new rl;new r2;
[ TpPKenc (projectionl (vote),PK (V),rl), ]
let encvote=multi in
TpPKenc (projectionZ {vote),PK (V),rZ)
let ballot=multi{ cred,encvote) in
let res=PKenc(ballot, PK(S)) in
out(pub,res).

Fig. 44: Coercion-resistance-condition2-voter

let corruptedvoter= let coercedvoter =
in (chVII,id); in (chVII,id);
new nonce; new nonee;
out(chVR,(nl,nonce)); out (chVRl,(nl,nonce));
in (chVR,(qﬂﬂlonce, ct)); in (chVRI s (qllznonce,ct));
out (pub,ct). let zkp=PK dec{ ct,SK (voter)) in
if' zkver (zkp)=true then
Fig. 45: Coercion-resistance-condition2-corrupted voter let (encered,=PK (V),m,vk)=publicl{zkp) in
if check(sign (m,voter),vk)qn then
let voterreg = let cred=enccred in
new noncel; new fakecred:
out (chVR2,(n1,noncel)); out (c,choice[cred,fakecred]);

in(chVRl, {=n2,=noncel ,credI,credJ,credE));

out (intemal, (nl,cred,fakecred)).

out (internall,(n2,crcdl,cred],credE)).

) ) ) . ) ) Fig. 47: Coercion-resistance-condition2-coerced voter
Fig. 46: Coercion-resistance-condition2-voter registration

let votercast =
in (intemal, (=nz ,credl,fakecred));
in (internall ,(=n2,=credIcreds. ,credEl));

Condition 3 describes the scenario that if the cheated
coercer abstains, then the Extractor needs to

abstain as well. The cbservational equivalence between:
d out(chVE,choice[(crec[[,cred[,credJ,u"edE),(fakecred,credl,cred],credE)]);

new r;
VC.S'[!C(X) V‘Chm(c'cl) (v) Vfbs Exra® [CMES <Z>ﬂ let encvote=TPKenc(va,PK (V) in
let reFPKenc((choi ce[credT,credi] ,encvote),PK (S)) in
and out(pub,res).
S[V] (v[v* Vk“ﬂ Fig. 48: Coercion-resistance-condition2-voter cast
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let tallying_authority=
NEW nonee;
out(chRT, (nl,nonce));

in{ pub,res);

let result=PKdec (res,SK (8)) in
new rl;new r2;
TpPKenc(proj

let cencvotea=multi (
TpPKenc (proj

let cencvotcbﬂnulti[

in(chRT, (=n2,=n0nce,enccred1,enccredZ));

let cencered=multi {encered] encered?) in

TpPKenc(projectionl{ vb

TpPKenc(projcctionZ(vb PK(C).r2

let testlzmulti(cenccrcd,cencvotea) in

let test2=multi(cencered,cencvoteb) in

if tmc:checkciphertcxt(testl,result,C,V) then out(com,va) else
if’ true=checkciphertext (test2,result,C,V then out{com,vb).

ection1(va),PK(C) ,rl) R
ection2({
(

}m

)
)
)

Fig. 49: Coercion-resistance-condition2-tallying authority

let registration_authority=
in(chIIR,id);
in (chVR,(ml,nonceV));
in(chRT,{=n1,nonceT));
new cred;
let cred1=projection](cred) in
let cred2—projection2(cred) in

new rl;new r2;

Nnew m:new r3;new r4d;

out| chVR,| n2,nonceV,PKenc| zk

out(chRT, (n2,nonceT,TpPKenc(cred1 JFK (C

(credl,
TpPKenc(credl,PK(V),rS),
TpPKenc(cred2,PK(V),r4),
PK (V),m,VK (voter)

),rl),TpPKenc (crcd2,PK (C),rZ)));

cred2,sign (m,voter)),

-PK (voter)

Fig. 50: Coercion-resistance-condition2-registration authority

let issuer authority=
new id;
out (chVILid);
out (chllIR,id);
out {pub,id).

Fig. 51: Coercion-resistance-condition2-issuer authority

1s need to be proved. Figure 31-33, 57-69 give the mputs
m extension of the PI calculus (Abadi and Blanchet,
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2005) of verification of Condition 3 in ProVerif. The

result shows that the  observational equivalence
betweer:

VC.S'{!C(X) \'yjcheat[c,cl) (V') Vjabs Elc:,cz,z [m&ﬂ}
and

s[v.(v)[v=
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is true in Fig. 70. Bad is not derivable shows that
observational equivalence is true.

In condition 4 if the cheated coercer casts a valid
vote using the fake registration secrets he received from

let extractor =
in(chVILid);
new nonceE;
out(chVPJ,(nl ,nonceE));
in(chVRB,(=n2,=nonceE,credl,credJ,credE));
in ( chVE, ( coercercred,:crec[[,:credJ,:credE));
lin (chTE,(ml,vencvote,enccredl));
let encvote=TPKenc (va,PK (v )) in

if true=equals (vencvote,(coercercred,encvote)) then out (pub,va) else

iftrue=equals(vencvote,(choice[cred],credl],encvote)) then out (pub,va ).

Fig. 52: Coercion-resistance-condition2-extractor

let modified_tallying_authority =
new nonce;
out (cthT, (nl,nonce));
in (cthT,(?12,=nonce,enccredl));
in (pub,res);
let resul=PKdec(res,SK(S)) in
out (chTE,(nl,pesult,enccredl)).

Fig. 53: Coercion-resistance-condition2-modified-tallying
authority

Vi, the Extractor needs to tally precisely this vote. The
observational equivalence between:

VC.S;[P‘\]]CheaL(C o) ‘Vabs

)

and

VC.S'[P‘\!‘“S“(E’EI)( )‘vabs

el

is to be proved. Figure 31-33, 71-83 give the inputs
in extension of the PI calculus (Abadi and Blanchet,
2005) of verification of Condition 4 in ProVerif. The

result  shows  that the observational equivalence
between:

T R——
and

VC.S;[P‘\]‘ChEBL(C o) ( )‘Vabs

B ]

15 true mm Fig. 84. Bad is not derivable shows that
observational equivalence is true.

In condition 5 an additional restriction is introduced

that justifies the abstraction of the third voter by the

let modified registration_authority =
in(ch]IRid)'
cthT ml,nonceT));
in { chcRT, (=n1,nonceT2});
in{chVR1,{ ;
chVR2,( ¥
m(chVRS (ml,nonceE));

in (

in ( )
in (cthT, ml,nonceTS))'

( —nl,nonceV))'

in( )

=nl.nonceV2

new credl;
new credl;
new credE;

new m;

out| chVR1,| n2,nonceV,PKenc| zk
PE (voter )

out (cthT (n2 nonceT, TPKenc(chmce[credI credE],PK (V
out (cthT n2 nonceT2 TPKenc(chmce[credJ credl| PK(V )))

out (cthT,(nZ,nunceTS,TPKenc (chmce [credE,cde] JPK (V )))),

(credl,sign {m,voter )),(TPKenc (credI,PK(V)),PK (V) m,VK(voter))),

out[chVR2, nZ,nonceVZ,TPKenc (cde,PK(V)),TPKenC (credJ,PK (V)),TPKenc (cde,PK (v )))),

out (chVR3 n2,nonceE, TPKenc (credl,PK (V)),TPKenc (credJ,PK (V)),TPKenc(credE,PK (v ))))

)
)

Fig. 54: Coercion-resistance-condition2-modified registration authority
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process new C;new Vinew S;
new voter;
new chVR;
new chVR1;
new chVR2;
new chVR3;
new chVII;
new chllR;
new chRT;
new chcRT;
out(pub,PK(C)
out(pub,PK(V)
out(pub,PK(S) :
out(pub,PK(votﬂ"));
voter|! comuptedvoter|!tallying authority|!registration_authority
[lissuer_authority|!votechooser |! modified_tallying_anthority

)5
).

>

Imodified registration authority | votercast | voterreg | coercedvater | extractor

Fig. 55: Coercion-resistance-condition2-process

INDOWS" system32'.cd.exe

iSelecting @

inserted. The rule containg 192 rules. 203 rules in the gueue.
inserted. The rule containg 388 pules. 146 rules in the gueue.
inserted. The rule contains 587 rules. 141 rules in the gueue.
inserted. The rule contains 767 rules. 137 rules in the gueue.
rules inserted. The rule containg 961 rules. 387 rules in the queue.
rules inserted. The rule containg 1161 rules. 234 vules in the gueue.
rules inserted. The rule contains 1361 rules. 262 rules in the gueue.
rules inserted. The rule contains 1561 rules. ?1 rules in the gueue.
rules inserted. The rule contains 1757 rules. 7?7 rules in the queue.
rules inserted. The rule containg 1947 rulez. 1208 vules in the gueue.
rules inserted. The rule containg 2139 rules. 113 rules in the gueue.
equivalence is true ¢(had not derivahle>.

sproverifhzdhproverifl 843

Fig. 56: The result of coercion-resistance-condition2

free pub,com. {(*public channel =)

private free ¢,chvote,chTE,chVE, intemall,internal.
free va,vb.

free n1,n2.

(=voter +)

let votechooser = out (chvote,va)‘out (chvote,vb) .

Fig. 57: Coercion-resistance-condition3-vote chooser
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let voter=
in (chVILid);
new nonce;
out(chVR,(nl,n(mce));
in (chVR,(znz,qlonce,ct )),
let zkp=PKdec(ct,SK (voter)) in
if’ zkver(zkp )=true then
let (enccr’edl,enccde,=PK (v ),m,vk)=public1 (zkp) in
if check (sign (m,voter),vk)qn then
let cred=multi(enccredl,encered2) in
in (chvote,vote);
new rl;newr2;
let encvote=multi (TpPKenc (pmjectionl(vote) ,PK(V),rl),TpPKenc(projectionl(vote),PK (v ),rl)) n
let ballot=multi{cred,encvote) in

let reFPKenc(ballot,PK (S)) in

out(pub,res).

Fig. 58: Coercion-resistance-condition3-voter

let corruptedvoter=
in (chVILid);
new nonce;
out ( chVR, (nl,nonce )),
in ( chVR, (=n2,~nonce,ct )),

out(pub,ct).

Fig. 59: Coercion-resistance-condition3-corrupted voter

let voterreg =
new noncel;
out (chVRl,(nl ,noncel )),
in (chVR2, (:nl,:noncel ,credI,credJ,credE));
out (interna]l, (n2,credl,credT credE ))

Fig. 60: Coercion-resistance-condition3-voter registration

let coercedvoter =
in(chVILid);
new nonce;
out{chVR1,{nl,nonce)});
in(chVRl,(qu,qmnce,ct));
let zkp=PK dec(ct,SK(voter}) in
if' zkver(zkp)=true then
let (enccred,:PK(V),m,vk)=pub1icl(7kp) in
if check (sign {m,voter ),vk )=m then
let cred=encered in
new fakecred;
out (intemal,(nZ,cred,fakecred)).

Fig. 61: Coercion-resistance-condition3-coerced voter
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let votercast =
in (internal,(=n2,credl,fakecred )),
in (internall, (=n2,=credLcredr credE )),
out(chVE,(fakecred,credl,cred],credE));
let encvote=TPK enc(va,PK (V) in
let res=PKenc ((crec[[,encvote),PK (S)) in

out (pub,res).

Fig. 62: Coercion-resistance-condition3-voter casting

let tallying_authority=
new nonce;
out (chRT, (nl,nonce));
in (chRT, (?12,=nonce,enccred1,enccredZ));
in (pub,ms);
let cenccred=multi{enccred],enccred?) in
let resul=PKdec (res,SK(8)) in
newrl.newr2;
let cencvotea=mu1ti(TpPKenc(projectionl(va) ,PK(C),rl),TpPKenc (pmjectionz(va) JPK (C),rZ)) in
let cencvotebqnulti(TpPKenc (pmjectiml(vb),PK (C),rl),TpPKenc (projectionl(vb),PK (C),rl)) in
let testlzmulti(cenccred,cencvotea) in
let test2=multi { cencered,cencvoteb) in
if true=checkciphertext (testl result,C,V) then out(com,va) else
if true=checkciphertext (test2,result,C,V) then out(com,vb).

Fig. 63: Coercion-resistance-condition3-tallying authority

let registration_authority=
in(ch]]R,id);
in(chVR,(qll,nonceV));
in(chRT,(qll,nonceT));
new cred;
let credl=projection]{cred) in
let cred?=projection2 (cred) in
newrl;newrz;
out(hRT, {n2.nonceT, TpPKene (ered .PK (C).r1), TpPKene cred2, PK (C) 12} )

new m;new r3;new r4;

TpPKenc(cred2,PK (V),r4) PK(V ),m,VK (voter})),PK { voter )

credl,cred2,sign {m,voter) ),(TpPKenc{ cred1,PK (V),r3),
out chVR{nZ,nonceV,PKenc(zk{( g ( )) (Tp ( ( ) ) ]]

Fig. 64: Coercion-resistance-condition3-registration authority

let issuer authority=
new id;
out{chVILid);
out {chIIR,id);
out {pub,id).

Fig. 65: Coercion-resistance-condition3-issuer authority
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let extractor =
in{chVILid);
new noncek;
out (chVRS, (nl,nonceE));
in (chVRS, (qll,qlonceE,cred[,credJ,credE));
in (chVE, (coema‘cmd,=cr'ed[,=cde,=credE));
! in(chTE, (qll,vmcvote,enccredl));

let encvote=TPKenc(va,PK{V)) in

out (pub,choice [Va,vb} )

if true=equals (vencvote, (choice [credl,credE] ,encvote)) then

Fig. 66: Coercion-resistance-condition3-extractor

let modified tallying authority =
new nonce;
out(cthT, (nl,nonce));

in(pub,res);
let resalt=PKdec (res,SK (S)) in
out(chTE,(nl,result,enccredl)).

in(cthT,(qu,qmnce,enccmdl));

Fig. 67: Coercion-resistance-condition3-modified tallying authority

let modified_registration_authority =
in (ch]]R id )

=nl,nonceV )),
)

A
chVR2,(-nl,nonceV2
(—nl,nonceE));

in (chVR3,
new credl;
new credl;
new credE;

new m;

out (cthT (nl,ﬂonceT TPKenc credl PK ))),
out (cthT (nl,ﬂonceTZ TPKenc(credJ PE(V ))))
out (cthT, n2,nonceT3,TPKenc(credE,PK( )))),

(credl,sign(m,voter)),
out| chVR1,| n2,nonceV,PKenc| zk

out

(TPKenc(cred[,PK (V )),PK (V),m,VK (voter))),PK (voter)ﬂ
out (chVRZ n2 nonceV2 TPKenc(credI,PK( )),TPKenc(credJ,PK(V)) TPKenc(cnedE PE(V ))))

chVR3, n2,n0nceE,TPKenc (credI,PK (V ) ) ,TPKenc(cde,PK (V )) TPKenc credE PK ))

Fig. 68: Coercion-resistance-condition3-modified registration authority

Extractor: votes with mvalid registration secrets are

silently discarded by the tallying authority. If this was not

the case a coercer could easily distinguish real {rom fake and
registration secrets. The observational equivalence
between:
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process new C;new Vi;new 5;
new voter;
new chVR;
new chVR1;
new chVR2;
new chVR3;
new chVII;
new chlIR;
new chRT;
new chcRT;
out(pub,PK(C));
out (pub,PK (v )),
out (pub,PK (S));

out(pub,PK(voter));

Ivoter|! corruptedvoteri!tallying_authority|lregistration_authority|!issuer authority|!votechooser
|! modified tally authority |modified registration authority | votercast | voterreg | coercedvoter | extractor

Fig. 69: Coercion-resistance-condition3-process

ermination warning: v_935 <> v_936 & attacker2:v_935.v_934 & attacker2:v_936.v

Selecting @
ompleting...
ermination warning: v_232 <> v_%33 & attacker2:v_9%31,v_%232 & attackerZ:iv_%31.v

Selecting B
ermination warning: v_935 <{> v_9%936 & attacker2:v_9%935,.v_9234 & attackerZ:v_936.v

Selecting B

200 rules inserted. The rule contains 189 rules. 199 rules in the gueue.

480 rules inserted. The rule contains 388 rules. 150 rules in the gueue.

680 rules inserted. The rule contains 587 rules. 134 rules in the gqueue.

B0 rules inserted. The rule contains 762 rules. 146 rules in the gueue.
rules inserted. The rule contains 965 rules. 323 prules in the gueue.
rules inserted. The rule contains 1165 rules. 216 rules in the queue.
rules inserted. The rule contains 1365 rules. 258 rules in the gueue.
rules inserted. The rule contains 1565 rules. 71 rules in the gueue.
rules inserted. The rule contains 1758 rules. 86 rules in the queue.
rules inserted. The rule contains 1952 rules. 118 rules in the gueue.
rules inserted. The rule se contains 2146 rules. 184 rules in the gueue.

equivalence iz true (bad not derivahlel.

sproverifbsdsproverifl 842

Fig. 70: The result of coercion-resistance-condition3

free pub,com. {*public channel *)

private free c,chvote,chTE,chVE.internall,internal.
free va,vb.

free n1,n2.

(*voter *)

let votechooser = out (chvote,va) | out (chvote,vb).

Fig. 71: Coercion-resistance-conditiond-vote choose
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let voter=
in (chVTLid);
new nonce;
out (chVR,(nl,nonce));
in (chVR,(qu,qlonce,ct));
let zkp=PKdec(ct,SK(v0ter)) in
if’ zkver(zkp)=true then
let (enccr’edl,enccde,=PK (V).m,vk )ﬁ)ublicl(zkp) in
if check (sign (m,voter),vk)qn then
let cred=multi( enccredl enccred2) in
in (chvote,vote);
new rlnewr2;
let encvote=multi (TpPKenc (pmjectionl (vote),PK (V) ,rl) ,TpPKenc(proj ection2 (vote ),PK (V ),r2 )) in
let ballo=multi{cred,encvote) in
let res=PKenc (ballot,PK (s )) in
out {pub,res).

Fig. 72: Coercion-resistance-conditiond-voter

let corruptedvoter=
in (chVILid);
new nonce;
out (chVR, (nl,nonce));
in (chVR,(=nZ,=nonce,ct));
out {pub,ct).

Fig. 73: Coercion-resistance-conditiond-corrupted voter

let voterreg =

new noncel;

out (chVRl,(nl ,noncel )),

in (chVR2, (:nl,:noncel ,credI,credJ,credE));
out (interna]l, (n2,credl,credT credE ))

Fig. 74: Coercion-resistance-conditiond-voter registration

let coercedvoter =
in(chVILid);
new nonce;
out(chVRl,(nlponce));
in(chVRl,(ﬁlZ,?lonce,ct));
let zkp=PK dec (ct,SK (voter)) in
if’ zkver(zkp)=true then
let (enccred,:PK(V),m,vk)=pub1icl(7kp) in
if check (sign {m,voter ),vk )=m then
let cred=enccred in

new fakecred;
out (intemal, (nl,cmd,fakecred)).

Fig. 75: Coercion-resistance-conditiond-coerced voter
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let votercast =
in (intemal,(=112,cred1,fakecred));
in (intemall, (=112,:cred[,credJ,credE));
out (chVE,(fakecred,credl,credJ,credE));
let encvote:TPKenc(va,PK (v )) in
let res=PKenc ((credl,encvote) PE(S )) in
out (pub,res)
let encvote:TPKenc(vb,PK (V)) in
let res:PKenc((fakecred,encvote),PK(S)) in
out (pub,res).

Fig. 76: Coercion-resistance-conditiond-voter casting

let tallying_authority=
new nonce;
out (chRT,(nl,nonce));
in (chRT, (qll,qmnce,enccmdl,enccmdl));
in (pub,res);
let cencered=multi{enceredl,encered2) in
let result=PKdec(res,SK(S)) in
new rl;new r2;
let cencvotea=multi (TpPKenc (projectionl (va) ,PK(C),rl) ,TpPKenc (proj ection2 (va),PK(C ),rz)) in
let cencvoteb=mu lti(TpPKenc (pmjectiml(vb),PK (C ),rl),TpPKenc (projectionl(vb),PK (C ),rl)) in
let test1=multi{cenccred,cencvotea) in
let test2=multi { cencered,cencvoteb) in

if thcheckciphertext(testl,result,C,V) then out(com,va) else

if’ true=checkeciphertext (test2,result,C,V) then out (com,vb).

Fig. 77: Coercion-resistance-condition4d-tallying authority

let registration_authority=
in{chIIR,id );
in(chVR,(=n1,n0nceV));
in(chRT,(qll,nonceT));
new cred;
let credi=projectionl{cred) in
let cred2=projection2 (cred) in
newrl;newrz;
out(chRT,(nZ,nunceT,TpPKenc (cmdl,PK(C),rl),TpPKenc(credZ,PK (C),rl)));

new m;new r3;new r4;

TpPKenc{ cred2,PK(V),r4),PK(V ),m, VK ( voter) )),PK (voter

credl,cred?,sign (m,voter) ),(TpPKenc{ cred1,PK (V),13),
out(chVR{nZ,nonceV,PKenc(zk{( ¢ ( )) (Tp ( ( ) ) )]ﬂ

Fig. 78: Coercion-resistance-conditiond-registration authority

let issuer_authority—=
new id;
out {chVILid);
out { chITR,id );
out {pub,id).

Fig. 79: Coercion-resistance-conditiond-issuer authority
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let extractor =
in(ehVILid);
new noneek;
out(chVR3, (nl,noncek));
in(ehVR3,(=n2,—nonesE, credl cred], cred K} ;
in(ehVE, (eoercerared, —credl, —credJ,—credE)) ;
!in{ehTE, (=n1,venevote encaedl)];
let enevote=TPKene (va, PK(V)) in

if true=equals (vencvotej (choice[cred] credE] ,encvote)) then

out(pub,choice[va,vb]) .

Fig. 80: Coercion-resistance-conditiond-extractor

let modified  tallying authority =

new nonee;
out(eheRT, (nl,nonce)) ;

in (cthTJ (=n2 =noncee ,enccredl)) ;
in(pub,res);

let Iesult:PKdec(res,SK(S)) in
out (chTE, (nl ,resultjenccredl)) .

Fig. 81: Coercion-resistance-condition4-modified tallying authority

let mocdified registration  anthority =

in{chIIR id);

in(cheRT, (=nl,noneeT));
in(eheRT, (=n1,noneeT2);
Jn(cthT,(:nl,ncmceTS)),
in (chVRl (=n1 ,nonceV)) ;
jn(chVRQ, (znl,nonceV?)) :
jn(chVRﬁ, (:nl,nonceE)) ;
new credl;

new credJ;

new credk;

new T,

out(cthTJ (n2,noneT, TPKenc (cred] PK (V)))) :
out(cthT, (n2,nonceT?2, TPKenc (cred], PK (V)))) ;
out(cthT, (n2,nonceT3, TPKenc (credE PK (V)))) ;
(eredl,sign (m,voter)),

out|chVR1, |n2noneeV PKenc | zk
(TPKenc(credLPK (V)) JPK (V) m VK (voter) )

PK (voter)

:

out(chVRQl (nQJnonceVQ,TPKenc (credLPK (V)) TPKenc (credJJPK (V)) , TPKenc(credE,PK (v)))) ;

out(chVRB, (n?,nonceE,TPKenc(credI,PK (V)),TPKene(ered] PK (V)), TPKene [credE PK (v)))).

Fig. 82: Coercion-resistance-conditiond-modified registration authority

is  proved in ProVerif. Figure 31-33, 85-91 give the Blanchet, 2005) of verification of Condition 2 in
inputs in extension of the PI calculus (Abadi and  ProVerif. The result shows that the observational
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new chVR3;
new chVIT;
new chllR;
new chRT;
new cheRT;
out (pub,PK (C)) ;
out(pub,PK(V));
out (pub,PK (8));
(

process new Cnew Vrnew S;
new vober,;
new chVR;
new chVR1;
new chVR2;

:

’

:

out(pub, PK (voter});

tvoter|'eorruptedvoter |tallying  authority [ltegistration  authority |lissuer authority|'votechooser

' modified tally authority |modified registration authority | votercast | voterreg | coercedvoter | extractor

Fig. 83: Coercion-resistance-conditiond-process

Selecting

ermination warning: vw_937 <> v_9238 & attacker2:v_937.v_9236 & attacker2:v_9238.v

[?36 —> had
Selecting
ompleting

ermination warning: v_934 <> v_9235 & attacker2:v_%33,v_9%34 & attacker2:v_%33.v

(735 —> had
Selecting

ermination warning: w_937 <> v_938 & attacker2:v_937,v_936 & attacker2:v_9%938.u
(736 —> had
Selecting
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egquivalence is true (bad not derivabhlel.

sproverifbsdysproverifl 84>

Fig. 84: The result of coercion-resistance-conditiond

free nl

free va,vb.

02,

[#vober )

free pub,com.(«+public channel )

privete free ¢,chvote chTE ch'VE internell internal.

let votechooser = out(chvote va) | out(chvote,vb).

Fig. 85: Coercion-resistance-condition5-vote chooser
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let voter—
in (chVILid);
new NOncE;
out(chVR,(nl,nonce));
in (chVRJ (:nQJ:ncmcejct)) ;
let zkp—PKdec(ct,SK (voter)) in
if gkver [zkp) =true then
let (enceredl encered?,=PK(V),myvk)=publicl(zkp) in
if check(sjgn (m,vater) ,vk) =11 then
let cred=multi (encared] encered?) in
in (chvote,vote);
new rlnew 12;
let encvote=multi (TpPKenc(projectjonl(vote) JPK[V) ,rl) ,TpPKenc(projection?(vote) JPE(V) ,r2)) in
let ballot=multi (cred encvote) in
let Ies:PKenc(baJlotjPK(S)) in
out(pub,res).

Fig. 86: Coercion-resistance-condition5-voter

let corruptedvoter—
in(chVIL,id);
new Nonce;
out(chVR, (nl ,nonce)) ;
in (chVR, (:n?,:nonce,ct)) ;

out{pub,ct).

Fig. 87: Coercion-resistance-condition5-corrupted voter

let voterchoies =

new Nonee;
out(chVR,, (nl ,nonce)) ;

in(eh VR, (=n2,=noncect});

let zkp=PKdee(ct,SK (voter)) in

if zkver (zkp)=true then

let (enceredlencered2,=PK (V] mvkj=publicl(zkp) in

if check[sign (m,voter) vk) =m then

let cred=multi (enccredl eneered?) in

in[chvote,vote);

new r1new r2;

new fakecred;

let enevote=multi (TpP Kene(projectionl{vote) PE(V),r1), TpP Kene( projection? (vote) , PK (V) ,r2)) in
let ballot=multi(chaice[ared,fekecred] encvote) in

let res:PKenc(baJlot,PK (S)) in

out(pub,res).

Fig. 88: Coercion-resistance-condition5-voter choice

equivalence 1s true in Fig. 92. Bad 1s not denivable shows According to the above analysis we can found
that observational equivalence 1s true. that the Acquisti protocol has the coercion-resistance
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let tallying authority=

new NOncE;

out(chRT, (nljnonce)) ;

in (chRT, (=n2,=nonce enccredl ,enccred?)) ;

in (pub,res);

let cenecred=multi(encered] eneered?) in

let result—=PKdec(res,SK(5)) in

new 11new 12;

let cencvotea=rmulti (TpPKenc (projectjonl tva) PK(C) ,rl) TpPKene (projection? tva) PK(C) JIQ)) in
let cencvoteb=rnulti (TpPKenc (projectionl (vb),PK(C) ,Il) TpPKenc (projecticm? (vb),PK (C) JIQ)) in
let test1=multi(cencered cenevotea) in

let test2=multi (cencered cencvoteb) in

if true=checkeiphertext (testl result,C,V) then out(eom,va) els

if true=checkeiphertext (test2 result,C,V) then out(com,vb).

Fig. 89: Coercion-resistance-condition5-tallying authority

let registration_authority=
in (chlIR,id};
in (chVRJ (=nl JnonceV)) ;
in (chRT, (:nl,nonceT)) ;
new cred;
let credl=projectionl(cred) in
let cred2=projection? (cred) in
new rlnew r2;
out (chRT, (n2 nanceT TpPKencaedl, PK(C) 1) TpPKene(cred? PK (C) ,rz))) :
new Im;new ri;new rd;
(credl cered? sign (m,voter)) [(TpPKenc (credl PK(V) ,13) ,

out| chVR,
TpPKene [ered2, PK (V) r4),PK (V) ,m, VK (voter) )),PK (voter)

n2 noneV PKene(zk

Fig. 90: Coercion-resistance-condition5-registration authority

process new Cnew Vrnew S;
new voter;
new chVR;
new chRT;
out (pub,PK (C))
out (pub,PK (V))
ot (pub,PK (S)) ;
out (pub,PK (voter));

’
’

(oter|teorruptedvoter|tallying _authority|registration_authority|lvotechocser [voterchoics)

Fig. 91: Coercion-resistance-condition5-process
with the assumption that the channel chVR1, chVRZ2 and  public then the coercer could easily distinguish real from

chVR3 between modified registration authority and fake registration secrets, thus the conditionZ of coercion-
coerced voter 1s private chammel If these chammels are resistance 1s not satisfied. The result 1s showed m Fig. 93.
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INDOWS' system32' cmd.exe

— Ohservational egquivalence

ernination warning: v_894 {> v_895% &

ermnination warning: v_8%94 {> v_895 &

[#95% —> bad:
Gelecting @

ermination warning: v_897 <> uv_898 &

896 —> had:
Belecting @
200 rules inserted. The rule
488 rules inzerted. The rule
AA rules inserted. The rule
BBA rules inserted. The rule

=1 3 |

attacker2:v_873.v_8%4 & attacker2:v_873.v

attacker2:v_897.v_8%6 & attacker2:v_878.v

contains
contains
contains
contains

attacker2:v_893.v_894 & attackerZ:w_893.v

attacker2:v_B27.v_8% & attacker2:v_87B.v

rules. 178 rules in the gueue.
rules. 82 r»ules in the gueue.
rules. 67 rules in the gueue.
rules. 113 rules in the gueue.

HHOAB rules inserted. The rule base contains 983 rules. 188 rules in the gueue.
1200 rules inserted. The rule base contains 1183 rules. 188 rules in the gueue.
IRESULT Observational eguivalence is true ¢(had not derivahled).

Fig. 92: The result of coercion-resistance-condition5

WINDOWS system3

put{pub, PH{C_58_123>> at
put<{pub, PEW_51 _18>> at {2>
put{pub,. PH{E 52 135> at {3
put{puh,. PE<{voter_53_97>> at {4

put {pub, voter_53_9%> at {53

E\prnuerifhsd\prouerifi.84)

in{chUR1. zk<(<{a 1.signfa_2.voter_ 53 92>, (TPKencCa 1 .PKCU_51_ 18>>.PK<U_51 18>.a 2
AUKCvoter_53_92220> at {22% in copy a B, a 7. a 6, a 5, a 4. a_3

out{c, choicelTPKenc<a_1,.PKCU_51_18>> fakecred_71_111> at {26> in copy a_ 8. a_ 7.

ab, a b, a4, a_3

he attacker tests whether TPKenc{a_1.PK<{U_51_18>> = choicelTPKenc<{a_1,.PK{U_51_1

A>>», fakecred 71 _111.

he result in the left-hand side is different from the result in the right-hand

ide.
trace has been found.

IRESULT Observational equivalence cannot he proved (bad derivahlel.

~proverifhsdsproverifl (84>

Fig. 93: The result of coercion-resistance-condition2 with the condition that the channels are public

CONCLUSION AND FUTURE WORK

Internet voting protocol play an important role in

remote voting system. Acquisti protocol 13 one of the

most unportant remote internets voting protocol

that
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claims to satisfy formal defimitions of key properties,
such as soundness, individual verifiability, as well as
receipt-freeness and coercion resistance without strong
physical constrains. But the analysis of its claimed
security properties 1s finished by hand which depends on
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experts’ knowledge and skill and is prone to make
mistakes. Recently owning to the contribution of
Backes et al. (2008a) Acquisti protocol can be proved
with mechanized proof tool ProVerif In this study the
review of the formal method of electronic voting protocols
are introduced we found that several formal models have
been proposed, but only the Backes et al. (2008b) model
supports the mechamzed proof tool; the formal model
and proof of secwity properties mainly focus on
receipt-freeness and coercion-resistance which are
umportant properties. Until now people have not proposed
a security analysis model based on computational model,
then applied PI calculus and the mechamzed proof tool
ProVerif are examined. After that Acquisti protocol is
modeled in applied PI calculus. Security properties,
mcluding soundness and coercion resistance, are verified
with ProVerif. The result we obtain is that Acquisti
protocol has the soundness. At the same time it has also
coercion-resistance in the conditions that the channel
between registration authority and voter 1s private. To our
best knowledge, the first mechamzed proof of Acquisti
protocol for an unbounded number of honest and
corrupted voters 1s finished.

As future work, we plan to prove other internet
voting protocols. Tt would also be interesting to
the security properties
commumnication protocol m the formal model with
mechanized proof tool ProVerif. At the same time we will
formalize the security properties of remote internet voting
protocols in the computational model with mechanized
tool CryptoVentf.

formalize in  wireless

ACKNOWLEDGMENT

This study was supported in part by Natural Science
Foundation of South-Center Umiversity for Nationalities
under the grants No: YZZ06026, titled Research on the
internet voting protocols with receipt-freeness, conducted
in Wuhan, China from 06/11/2006 to 20/11/2009. The
preliminary part work in this study is published in
Meng et al. (2010c).

REFERENCES

Abadi, M. and AD. Gordon, 1999. A calculus for
cryptographic protocols: The spi calculus. Inform.
Comput., 148: 1-70.

Abadi, M. and C. Fournet, 2001. Mobile values, new
names and secure commumication. Proceedings of
the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, London, UK.,
March 2001, ACM New York, USA., pp: 104-115.

331

Abadi, M., B. Blanchet and C. Fournet, 2004. Just
Fast Keying in the PT Calculus. Tn: Programming
Languages  and Sc¢ hmidt, D. (Ed.).
LNCS., 2986, Springer, Berlin, Heidelberg,
ISBN-13: 978-3-540-21313-0, pp: 340-354.

Abadi, M. and B. Blanchet, 2005, Analyzing security
protocols with secrecy types and logic programs.
I ACM, 52: 102-146.

Acquisti, A., 2004, Receipt-free homomorphic elections
and write-m voter verified ballot. CMU-ISRI-04-116,
2004, Carnegie Mellon Institute for Software
Research International. http://www.heinz.cmu.edu/
~acquisti/papers/acquisti-electronic_voting.pdf.

Aditya, R, B. Lee, C. Boyd and E. Dawson, 2004.
An efficient mixnet-based voting scheme
providing receipt-freeness. Lecture Notes Comput.
Sci., 3184: 152-161.

Backes, M., C. Hritcu and M. Maffei, 2008a. Automated
verification of remote electronic voting protocols m
the applied Pi-calculus. Proceedings of the 21st IEEE
Computer Security Foundations Symposium, Tune
23-25, IEEE Computer Society, Washington, DC,
pp: 195-209.

Backes, M., M. Maffer and D. Unruh, 2008b.
Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous
attestation protocol. Proceedings of the 29th TEEE
Symposium on Secwrity and Privacy, May 2008,
Preprint on IACR ePrint, pp: 202-215.

Baskar, A., R. Ramamyjam and S.P. Swesh, 2007.
Knowledge-based modelling of voting protocols.
Proceedings of the 11th Conference on theoretical
Aspects of Rationality and Knowledge, JTune 25-27,
Brussels, Belgium, pp: 62-71.

Baudron, O., P.A. Fouque, D. Pointcheval, G. Poupard
and 5. Tacques, 2001. Practical multi-candidate
election system. Proceedings of the Annual ACM
Symposium on Principles of Distributed Computing,
2001, ACM, New York, USA., pp: 274-283.

Benaloh, J. and D. Tuinstra, 1994. Receipt-free
secret-ballot elections. Proceeding of the 26th
Anmual ACM Symposium on Theory of Computing,
May 23-25, ACM, New York, USA., pp: 544-553.

Bhargavan, K., R. Corin, C. Fournet and E. Zalinescu,
2008. Cryptographically verified implementations for
TLS. Proceedings of the 15th ACM Conference on
Computer and Commumecations Security, Oct. 27-31,
Alexandria, Virginia, UUSA.., pp: 459-468.

Blanchet, B., 2001. An efficient cryptographic protocol
verifier based on prolog rules. Proceedings of the
14th TEEE Workshop on Computer Security
Foundations, Jun. 11-13, IEEE Computer Society,
Washington, DC, pp: 82-96.

Systems,



Inform. Technol. J., 10 (2):293-334, 2011

Blanchet, B., 2008. A computationally sound mechamzed
prover for secwrity protocols. TEEE Trans.
Dependable Secure Comput., 5. 193-207.

Blum, M. and S. Micali, 1984. How to generate
cryptographically strong sequences of pseudo-
random bits. STAM . Comput., 13: 850-864.

Burrows, M., M. Abadi and R. Needham, 1989. A
logic of authentication. SIGOPS Operat. Syst. Rev.,
23:1-13.

Burrows, M., M. Abadi and R. Needham, 1990. A logic of
authentication. ACM Trans. Comput. Syst., 8 18-36.

Chaumn, D.L., 1981. Untraceable electronic mail, return
addresses and digital pseudonyms. Commun. ACM,
24: 84-88.

Chaum, D., 2004 Secret-ballot receipts: True
voter-verifiable elections. IEEE Security Privacy,
2: 38-47.

Chaum, D., P. Y.A. Ryan and S. Schneider, 2005. A
practical  voter-verifiable  election  scheme.
Proceedings of the ESORICS, Sept. 12-14, Milan,
Ttaly, pp: 118-139.

Cichon, J., M. Kutylowski and B. Glorz, 2008. Short Ballot
Assumption and Threeballot Voting Protocol In:
SOFSEM 2008: Theory and Practice of Computer
Science, Geffert, V. et al. (Eds.). Springer-Verlag,
Berlin Heidelberg, pp: 585-398.

Clarke, EM., 5. Jha and W. Marrero, 2000. Verifymng
security protocols with Brutus. ACM Trans. Softw.
Eng. Methodol., 9: 443-487.

Clarkson, M.R., S. Chong and A.C. Myers, 2008. Civitas:
Toward a secure voting system. Proceeding of the
2008 IEEE Symposium on Security and Privacy, May
18-21, Oakland, California, USA., pp: 354-368.

Cramer, R., R. Gennaro and B. Schoenmakers, 1997. A
Secure and Optimally Efficient Multi-Authority
Election Scheme. In: Trustworthy Global Computing,
Fumy, W. (Ed.). Springer-Verlag, Berlin Heidelberg,
pp: 103-118.

DeMillo, RA, N.A Lynch and M.J Merritt, 1982.
Cryptographic protocols. Proceedings of the 14th
Annual ACM Symposium on theory of Computing,
May 05-07, San Francisco, California, United States,
pp: 383-400.

Delaune, 3., S. Kremer and M. Ryan, 2005. Receipt-
freeness: Formal definition and fault attacks.
http: /iwww . 1sv. ens-cachan. fr/Publis/P APERS/PDF/
DKR-fee05.pdf.

Delaune, S., S. Kremer and M.D. Ryan, 2006a. Coercion-
resistance and receipt-freeness in electronic voting
protocol. Proceedings of 19th TEEE Computer
Security Foundations Workshop, July 5-7, Venice,
Ttaly, pp: 28-42.

332

Delaune, S., S. Kremer and M. Ryan, 2006b. Verifying
properties  of electronic  votng  protocols.
http://www. 1sv.ens-cachan. fr/Publis/PAPER S/PDF/
DKR-wote06.pdf.

Dolev, D. and A.C. Yao, 1983. On the security of
public key protocols. IEEE Trans. Inform. Theor.,
29: 198-208.

Fujioka, A., T. Okamoto and K. Ohta, 1992. A practical
secret voting scheme for large-scale elections.
Proceedings of the Workshop on the Theory and
Applicaton  of  Cryptographic  Techniques:
Advances in  Cryptology, December 13-16,
Springer-Verlag, London, UK., pp: 244-251.

Gerling, S., D. Jednoralski and X.Y. GU, 2008. Towards the
verification of the civitas remote electronic voting
protocol using proverif. http://www.imfsec.cs. uni-sb.
de/teaching/WS07/Seminar/reports/civitas-
proverif.pdf.

Groth, I., 2004. Bvaluating Security of Voting Schemes in
the Universal Composability Framework. In: Applied
Cryptography and Network Security, Jakobsson, M.,
M. Yung and J. Zhou (Eds.). Springer-Verlag, Berlin
Heidelberg, pp: 46-60.

Hirt, M. and K. Sako, 2000. Efficient receipt-free voting
based on homomorphic encryption. Proceedings
of the International Conference on the Theory
and Application of Cryptographic Techniques,
May 14-18, Bruges, Belgium, pp: 539-556.

Hoare, C.A., 1985. Communicating Sequential Processes.
Prentice-Hall, Inc., USA.

Hubbers, E., B. JTacobs and W. Pieters, 2005. RIES-mternet
voting in action. Proceedings of the 25th Annual
International Computer Software and Applications
Conference, Tuly 26-28, TEEE Computer Society,
Washington, DC., pp: 417-424.

Takobsson, M., K. Sako and R. Impagliazzo, 1996.
Designated verifier proofs and their applications.
Proceedings of the International Conference on
the Theory and Application of Cryptographic
Techniques, May 12-16, Spain,
pp: 143-154.

Jonker, HL. and EP. de Vmk, 2006. Formalising
receipt-freeness. Proceedings of the Sth International
Conference on Information Security, Aug. 30-Sept. 2,
Samos Island, Greece, pp: 476-488.

Tonker, HI. and W. Pieters, 2006. Receipt-freeness as a
special case of anonymity in epistemic logic.
Proceedings of the TAVoSS Workshop on
Trustworthy Elections, Tune 29-30, 2006, Cambridge,
UK.

Saragossa,



Inform. Technol. J., 10 (2):293-334, 2011

Joseph, C. and F. Cremers, 2006. Scyther-semantics and
verification of security protocols. http://alexandria.
tue nl/extra2/20061 2074 pdf.

Juels, A. and M. Jakobsson, 2002. Ceercion-resistant
electronic  elections, 2002.  http//’www.vote-
auction. net/ VOTEATUCTION/165.pdf.

Tuels, A., D. Catalano and M. Jakobsson, 2005. Coercion-
resistant electronic elections. Proceedings of the
2005 ACM Workshop on Privacy in the Electronic
Society, Nov. 07-07, Alexandria, VA, USA., pp: 61-70.

Kessler, V. and H. Neumann, 1998. A sound logic for
analysing  electronic  commerce  protocols.
Proceedings of the 5th European Symposium on
Research in Computer Security, Sept. 16-18, London,
UK., pp: 345-360.

Kindred, D., 1999. Theory generation for security
protocols. Doctoral Thesis, Carnegie Mellon
University.

Lee, B., C. Boyd, E. Dawson, K. Kim, J. Yang and S. Yoo,
2003. Providing receipt-freeness in mixnet-based
voting  protocols.  http:/caislab.icuac ki/Paper/
paper_files/2003/ICTSCO3/mnvoting-final-icisc20.pdf.

Lowe, G., 1998. Casper: A complier for the analysis of
security protocols. J. Comput. Sec., 6: 53-84.

Maggi, P. and R. Sisto, 2002. Using SPIN to verify
security properties of cryptographic protocols.
Proceedings of the 9th international SPIN Workshop
on Model Checking of Software, April 11-13,
Springer-Verlag, London, pp: 187-204.

Magkos, E., M. Burmester and V. Chrissikopoulos, 2001 .
Receipt-freeness m large-scale elections without
untappable channels. Proceedings of the IFIP
Conference on Towards the E-Society: E-Commerce,
E-Business, E-Government, Oct. 03-05, uwer BV,
Deventer, The Netherlands, pp: 683-694.

Mauw, S., J. Verschuren and E.P. De Vink, 2007. Data
anonymity in the FOO voting scheme. Elect. Notes
Theor. Comput. Sci., 168: 5-28.

MecMillan, K.L., 1992, Symbolic model checking: An
approach to the state explosion problem. PhD.
Thesis, Carnegie Mellon University.

Meadows, C.A., 1996. The NRIL protocol analyzer: An
overview. J. Logic Programming, 26: 113-131.

Mei, T, H. Miao and P. L, 2009. Applymng SMV
for security protocol verification. Infom. Technol.
I, 8:1065-1070.

Meng, B., 2007a. Analysis of internet voting protocols
with jonker-vink receipt freeness formal model.
Proceedings of the International Conference on
Convergence Information Technology, Nov. 21-23,
ICCIT., IEEE Computer Society, Washington, DC.,
pp: 663-669.

333

Meng, B., 2007b. An internet voting protocol with receipt-
free and coercion-resistant. Proceedings of 7th ITEEE
International Conference on Computer and
Information Technology, Oct. 16-19, IEEE Computer
Society, Washington DC, USA., pp: 721-726.

Meng, B., 2008. Formal analysis of key properties in the
internet voting protocol using applied PI calculus.
Inform. Technol. ., 7: 1133-1140.

Meng, B., 2009a. A secwre internet voting protocol
based on non-interactive deniable authentication
protocol and proof protocol that two ciphertexts
are encryption of the same plaintext J. Networks,
4: 370-377.

Meng, B., 2009. A formal logic framework for
receipt-freeness in internet voting protocol. .
Comput., 4: 184-192.

Meng, B., 2009¢. A critical review of receipt-freeness and
coercion-resistance. Inform. Technol. 1., 8 934-964.

Meng, B., 2009d. A secure non-interactive deniable
authentication  protocol with strong demability
based on discrete logarithm problem and its
application on Internet voting protocol. Inform.
Technol. ., 8: 302-309.

Meng, B. and J.Q. Wang, 2010. An efficient receiver
deniable encryption scheme and its applications.
T Networks, 5: 683-690.

Meng, B., ZM. Li and J. Qin, 2010. A receipt-free
coercion-resistant remote internet voting protocol
without physical assumptions through deniable
encryption and trapdoor commitment scheme. J.
Software, 5: 942-949.

Meng, B.,, W. Huang and J. Qin, 2010b. Automatic
verification of security properties of remote internet
voting protocol in symbolic model. Inform. Technol.
I, 9:1521-1556.

Meng, B., W. Huang and D.J. Wang, 2010c. Automatic
verification of remote internet voting protocol

symbolic Advances in
Electronic Commerce and Information Technology of
ISECS.

Merritt, M.T., 1983, Cryptographic  protocols.
Ph.D. Thesis, Georgia Institute of Technology.
Mitchell, T.C., M. Mitchell and U. Stern, 1997. Autemated
analysis of cryptographic protocols using Mur.
Proceedings of the 1997 TEEE Symposium on
Security and Privacy, May 04-07, Digital Library,

pp: 141-141.

Paillier, P., 1999. Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes. TIn:
Advances in Cryptology-EUROCRYPT '99, Stern,
I.(Ed). Springer-Verlag, Berlin Heidelberg,
pp: 223-238.

in model. Recent



Inform. Technol. J., 10 (2):293-334, 2011

Paulson, 1..C., 1998. The inductive approach to
verifying cryptographic protocols. Comput. Security,
6: 85-128.

Rivest, RL., 2006, The threeBallot voting system.
http: //theory.csail. mit.edu/~rivest/Rivest-TheThree
BRallotVoting System. pdf.

Sako, K. and J. Kilian, 1995. Receipt-Free Mix-Type
Voting Scheme, A Practical Solution to the
Implementation of a Voting Booth. In: Advances in
Cryptology-EUROCRYPT 95, Guilloy, I..C. and
1.1, Qusquater (Eds.). Springer-Verlag,
Heidelberg, pp: 393-403.

Song, DX, 1999, Athena: A new efficient automatic
checker  for  security  protocol  analysis.
Proceedings of the 12th IEEE Workshop on
Computer Security Foundations, June 28-30,
TEEE Computer Society, Washington, DC.,
pp: 192-202.

Berlin

334

Talbi, M., B. Morin, V. Viet Triem Tong, A. Bouhoula and
M. Mejri, 2008. Specification of electronic voting
protocol properties using ADM logic: FOO case
study. Proceedings of the 10th international
Conference on information and Communications
Security, Oct. 20-22, Birmingham, UK., pp: 403-418.

Thayer, F., J.C. Herzog and J.D. Guttman, 1998. Strand
space: Why 18 a security protocol correct?
Proceedings of the 1998 TEEE Symposium on
Security and Privacy, 1998, ACM, USA., pp: 160-171.

Ven Eyck, J. and 5. Orzan, 2007. Epistemic verification
of anonymity. Elect. Notes Theor. Comput. Sci.,

168: 159-174.
Yao, A.C., 1982. Theory and application of trapdoor
functions. Proceedings of the 23rd Annual

Symposium on Foundations of Computer Science,
Nov. 3-5, [EEE Computer Society, Washington, DC.,
pp: 80-91.



	ITJ.pdf
	Page 1


