Optimization Model and Particle Swarm Optimization Algorithm of Operation Plan for Scheduled Freight Train

1,Yuzhao Zhang, 1,Yusong Yan and 1,Zuoin Hu
1School of Transportation and Logistics, Southwest Jiao tong University, Chengdu 610031, China
2School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract: Conventional researches on optimization model and algorithm of operation plan for scheduled freight train usually neglected shippers' demands and suffered from solving the vast calculation task of large-scale railway network. Therefore, this study aimed at establishing new optimization model based on fully considering shippers' demands, as well as putting up with more efficient solution algorithm. The model took maximum satisfied degree of shippers' and minimum operation cost of railway enterprise as objectives, while took service frequency, transit time range, as constraints. The designed algorithm was on the basis of particle swarm optimization which was suitable for multi-objective problem and large-scale network. The study results showed that the model synthetically reflected the profits of both railway enterprise and shippers and the solution time could meet the demand of railway, meanwhile, the algorithm had strong robustness.

Key words: Railway freight transportation, scheduled freight train, operation plan, particle swarm optimization

INTRODUCTION

With the continuous increase of energy cost and increasingly serious of the environment, there are more and more problems of the express freight transportation system which is taking airway and highway as the major transport mode. So many countries pay more attention to the development of train express freight transportation, of which scheduled freight train is the most important organization mode (Wang et al., 2009a). Compared with the rapid increase of express freight transport demand and the variety of shippers' requirement, the academic studies on rail transport organization of express freight are relatively barren (Yang, 2000; Ceselli et al., 2008). Although, before 1987, the problems of running routes and empty car distribution of express freight train had been analyzed detailedly (Haghtani, 1987), the studies in recent years primarily focus on the design and optimization of plan for luggage and parcel trains and container trains. These studies include two kinds, one is aiming at the optimization of freight train plan using service network design method (Wang and Liu, 2007; Wang et al., 2005b; Li et al., 2009; Lin, 2001), another is establishing optimization model of freight train plan taking the minimum cost or maximum benefits of rail transport enterprise as objective based on the prediction of freight flow volume (Yan et al., 2008; Newman and Yano, 2001; Li, 2008). Moreover, there also some researches on the optimization of train formation diagram of express freight (Li and Lu, 2004), as well as optimization of scheduled transit train operating plan (Guo et al., 2011). Regretfully, present studies on the transport organization of railway express freight are all establishing optimization models from the production angle, seldom consider the demand of shippers, furthermore, the constraint about carrying capacities is also hardly taken into account. The solving methods of the operation plan for express freight train are often simplex algorithm or directly computing the solutions by Lingo software, which can not work if the network scale is large.

In order to overcome the above problems, firstly, this study mainly analyzes the characteristic of operation plan for scheduled freight train and the shippers' demands. Secondly, the theory of multi-objective plan is adopted to establish more practical optimization model of operation plan for scheduled freight train. And then, the solving algorithm for the model based on particle swarm optimization is designed. Finally, a case is used to verify the model and the algorithm.

ANALYSIS OF OPERATION PLAN FOR RAILWAY SCHEDULED FREIGHT TRAIN

Making operation plan of scheduled freight train is to determine departure station, arrival station, running path, running frequency and so on. When working out and
optimizing operation plan of scheduled freight train, the chief objective is to meet the demands of shippers. We primarily consider the demands of shippers in three aspects, which are freight flow volume demand, transport time demand and service frequency demand. Among these demands, freight flow volume demand of shippers is taken the objective in the model, while the other two demands are taken constraints. The cost of transportation enterprise is also very important when operating scheduled freight train, so the minimum cost of railway transportation enterprise is another objective. The cost mainly includes four parts, which are arrival-departure cost of trains, running cost of trains, travel cost of cars, as well as throw-hang operation cost of cars.

While determining and optimizing operation plan of scheduled freight train, there are some constraints, such as a certain freight volume is essential to ensure the number of formation cars can meet the demand of operating scheduled freight train, meanwhile, the number of formation cars can not be more than the section traction weight (Zhang et al., 2011). Furthermore, the running of scheduled freight train is confined by the carrying capacity of section and departure-arrival capacity of station.

In order to reduce the complexity of the problem and consider the characteristics of the operation plan of scheduled freight train, the following assumptions are made to set up the model easily.

The stations considered in this paper are just the handling stations and organizing stations which have upstanding scatter and distribution function and can meet the demand for departure and arrival of the whole train.

Only consider the volume of freight flow, not probe into the freight kind and their transportation conditions. Meanwhile, the freight transportation demand and freight flow volume are all converted into car flow volume in each day and the section traction weight is also represented by the traction cars of each section.

The loading capacity of each car is same, that means the freight flow volume loaded on every car is the same. Moreover, suppose the grade of all the scheduled freight trains is the same and the running time on the same section of each train is identical.

A batch of cargo can not be separated. That is the running path of the same batch of freight flow is consistent.

OPTIMIZATION MODEL OF OPERATION PLAN FOR SCHEDULED FREIGHT TRAIN

Description of relative parameters

Parameters: we define the following parameters:

- $G(S, E) =$ Railway physical network with station set S and edge set E
- $S = \{s_i\} =$ Station set of railway network, where, $i = 1, 2, ..., n$
- $E = \{e_{ij}\} =$ Edge set of railway network, where, $a = 1, 2, ..., m$
- $l(e_a) =$ Mileage of edge e_a $a = 1, 2, ..., m$
- $n(s_i) =$ Arrival-departure capacity of station s_i $\forall s_i \in S$
- $n(e_{a}) =$ Carrying capacity of edge $e_{a} \forall e_{a} \in E$
- $p_{jk} =$ The k-th path between s_i and s_j $\forall s_i, s_j \in S$ and $s_i \neq s_j$, $k = 1, 2, ..., p_{ij}$ p_{ij} means the number of path between s_i and s_j
- $l_{jk} =$ Length of path p_{ij}
- $Y_{ik} (e_{a}) =$ Y_{ik} (e_{a}) = 1 if edge e_{a} being in path p_{ik} and 0 otherwise
- $d_{i} =$ Freight transport demand between s_i and s_j, $\forall s_i, s_j \in S$
- $q_{ik} =$ Requiring service frequency of train t_{ik}
- $q_{ik} =$ Service frequency of train t_{ik}
- $m_{ik} =$ Number of formation cars for scheduled freight train between s_i and s_j, $\forall s_i, s_j \in S$, $m_{ik} \geq 0$
- $m_{min} \leq m_{ik} \leq m_{max} =$ Minimum number and maximum number of scheduled freight train formation cars between s_i and s_j, $\forall s_i, s_j \in S$
- $t(e_a) =$ Running time of scheduled train on e_a
- $t(s_i) =$ Operating time of scheduled train in s_i
- $c_i =$ Arrival-departure cost per train
- $c_j =$ Train travel cost per kilometer
- $c_i =$ Car travel cost per kilometer
- $c_i =$ Throw-hang operation cost per station

Decision variables: We define the following decision variables.

- $X_{ik} = 1$, if train t_{ik} is operated taking s_i as original departure station, s_j as final arrival station and p_{ij} as its running path, while 0 otherwise.
- $X_{ik} (u) = 1$, if train t_{ik} has throw-hang operation, and 0 otherwise, $s_i \in p_{jk}$
- $Y_{ik} (e_{a}) = 1$ if e_{a} being transported by train t_{ik} and 0 otherwise, $s_i \in p_{ij}, s_j \in p_{ij}$

Objective function

Minimum cost of railway transport enterprise: The cost of railway transport enterprise mainly includes four parts, which are arrival-departure cost of trains, running cost of trains, travel cost of cars, as well as throw-hang operation cost of cars. Each part is analyzed one by one.

- Departure-arrival cost of trains:

$$c_i = \sum_{i} \sum_{j} X_{ik} c_{ij}$$ (1)
Running cost of trains:
\[C_2 = c_2 \sum_{i,j,k} \sum_{s} X_{ijk}s q_{ik} t_{ik} \]
\(\text{(2)} \)

Travel cost of cars:
\[C_3 = c_3 \sum_{i,j,k} \sum_{s} X_{ijk}s q_{ik} l_{ik} n_{ik} \]
\(\text{(3)} \)

Throw-hang operation cost of cars:
\[C_4 = c_4 \sum_{i,j,k} \sum_{s} \sum_{\sigma s} X_{ijk}(s) q_{ik} \]
\(\text{(4)} \)

Then, we get the objective function of minimum cost of railway transport enterprise as Eq. 5:
\[\text{Min } Z_1 = C_2 + C_3 + C_4 \]
\(\text{(5)} \)

Maximum satisfied degree of shippers’ demands: The objective of satisfying shippers’ demands to maximum extent can be achieved by transporting freight volume as much as possible, the expression of which is shown Eq. 6:
\[\text{Max } Z_2 = \sum_{i,j,k} \sum_{s} \sum_{\sigma \sigma s} Y_{ij}^{\sigma} d_{ij} \]
\(\text{(6)} \)

Constraints: In this study, the constraints being considered mainly include train running frequency constraints, number of formation cars constraints, capacity constraints, transit period constraints and unique constraints, which are analyzed one by one.

Train running frequency constraints: The running frequency of train \(t_{ik} \) should not be less than its requirement service frequency:
\[q_{ik} \geq q_{ik}^{d} \]
\(\text{(7)} \)

Number of train formation cars constraints: The number of train formation cars should be between the minimum number of formation cars and the maximum value:
\[m_{ik}^{\min} \leq m_{ik} \leq m_{ik}^{\max} \]
\(\text{(8)} \)

Station capacity constraints: Number of trains arriving or departing at station \(s \) should be less than its capacity:
\[\sum_{j} \sum_{k} X_{ijk}s q_{ik} + \sum_{j} \sum_{k} X_{ijk}s q_{ik} \leq n(s) \]
\(\text{(9)} \)

Constraints of section capacity: Maximum number of trains on edge \(e_{s} \) should be less than its carrying capacity:
\[\sum_{i,j,k} X_{ijk}s q_{ik} Y_{ij}^{s}(e_{s}) \leq n(e_{s}) \]
\(\text{(10)} \)

Transit period constraints: Running time of train \(t_{ik} \) should be within the transit period being distributed to it:
\[\sum_{i,j,k} (e_{s}) X_{ijk}s Y_{ij}^{s}(e_{s}) + \sum_{i,j,k} X_{ijk}(s) n(e_{s}) \leq T_{ij} \]
\(\text{(11)} \)

where, \(T_{ij} \) represents the transit period being distributed to train \(t_{ik} \).

Unique choice of cars flow: A car flow is only distributed one train. For \(\forall s_{k} \in p_{ij}^{s} \), \(s_{b} \in p_{ik}^{s} \):
\[\sum_{i,j,k} Y_{ij}^{s} \leq 1 \]
\(\text{(12)} \)

This kind of restriction meaning that exact one train can be chosen if:
\[\sum_{i,j,k} Y_{ij}^{s} = 1 \]

otherwise the flow being not transported.

Nonnegative constraints: All variable values are not less than zero.

SOLUTION ALGORITHM DESIGN BASED ON PARTICLE SWARM OPTIMIZATION

Model analysis: By analyzing above model, we can find that the optimization model of scheduled freight train plan is a multi-objective non-linear mixed integer plan. Meanwhile, for the two objective functions, one is a maximization problem and another is a minimization problem. Furthermore, the dimension of the objective functions is not unified. So, it is very difficult to solve the model directly. Therefore, we deal with the objective
functions before solving the model. Firstly, we convert Eq. 6 into Eq. 13, so that the maximization problem be transformed a minimization problem:

$$\text{Min } Z'_j = 1 - \frac{Z_j}{\sum Z_j a_i}$$

$$\text{Where:}$$

$$\frac{Z_j}{\sum Z_j a_i}$$

expresses the satisfied degree of shippers’ transport volume demand, while the target value Z'_j represents the unsatisfied degree of shippers’ transport volume demand and $Z'_j \in [0, 1]$.

Then, we structure Eq. 14 by combining with Eq. 5 and 13, so that the bi-objective model is converted into single objective model, which considers both the operation cost of railway transport enterprise and the satisfied degree of shippers’ freight transport volume demand.

$$\text{Min } Z = Z_i \times Z'_j$$

$$= (c_1 \sum_{i,j} x_{ij} + c_2 \sum_{i,j} x_{ij} q_{ij} m_{ij} + c_3 \sum_{i,j} x_{ij} q_{ij} q_{ij})$$

$$\sum_{i,j} x_{ij} + \sum_{i,j} x_{ij} q_{ij} q_{ij}$$

$$\times (1 - \frac{Z_j}{\sum Z_j a_i})$$

Finally, we get a non-linear mixed integer plan model taking Eq. 14 as objective function and Eq. 7-12 as constraints. This kind of model belongs to NP-Hard problem, which is difficult to solve by traditional methods. In recent years, heuristic algorithms such as Genetic Algorithm (GA), Simulated Annealing algorithm (SA), Ant Colony Algorithm (ACA), Particle Swarm Optimization algorithm (PSO), et al. are applied to solve this kind of problem. According to the comparative analysis of some researchers, there is advantages and disadvantages of each algorithm, but PSO has the superiority in solving time and algorithm complexity (Kennedy et al., 2001; Mendes et al., 2004). So we design a solution algorithm for the scheduled freight train plan problem based on PSO by drawing lessons from the ideology of literature (Meng et al., 2010; Tu et al., 2011).

Algorithm design

Pretreatment of the paths: The physical network of the railway is quite sparse, so that there are generally only a small number of sensible paths to use. By the pretreatment of the paths, we reduce the number of paths greatly and decrease the calculation work required to solve the model. The size of the set P is limited by allowing through the physical network only paths that are within twice of the length of the shortest path. The concrete operating procedures are as follows:

Step 1: Calculating the length of the shortest path for each station pair of the railway physical network by Dijkstra algorithm

Step 2: Choosing the paths the length of which is within twice of the length of the shortest path for station pair as candidate path set

Design of particle swarm algorithm

Coding of the particle and the generation of initial population: We construct a code mode with T+A+B+C+D+E dimension to represent the feasible structure set of scheduled freight train plan. The position vector of each particle be set as:

$$X = [x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}],$$

where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$ and X_{15} respectively represent the value of X_{15}, X_{16} (u), Y_{15}, m_{15} and q_{15}. Integer coding mode is applied for X.

Generate initial population randomly. The population size is set as N, and its value is between 20 and 50. For the generation of individual particle, firstly, we generate a random variable rand that belongs to (0, 1), if its value is larger than a fixed value μ (we set it as 0.5), then $X_{15} = 1$, otherwise $X_{15} = 0$. For $X_{16}(u)$ and Y_{15}, if $X_{15} = 1$, then we generate their initial values applying the same method, while if $X_{15} = 0$, then their values are all 0. For m_{15} and q_{15}, their initial values are generated randomly within their value ranges.

Fitness function: Define Eq. 14 as the fitness function of the algorithm, and calculate the fitness value of each particle. If the value is better than current extremum of the individual, then set P_i as current position, and update the individual extremum. Of course, if the best individual extremum value of all the particles is better than current global extremum, then set P_i as current position and update the global extremum.
Update of velocity and position: Update the velocity and position of particle respectively applying Eq 15 and 16:

\begin{align}
V_{i+1} &= \omega V_i + \lambda_1 (P_i - X_i) + \lambda_2 (P - X_i) \\
X_{i+1} &= X_i + V_{i+1}
\end{align}

where, \(\omega \) is inertial factor and \(\omega \in [0, 1] \). \(\lambda_1 \) and \(\lambda_2 \) are both constants, which express the influence degree that the particle population has on individual particle and \(\lambda_1 + \lambda_2 = 4 \). \(r_i \) and \(r_j \) are random numbers between 0 and 1. \(P_i \) represents the optimal position of individual particle, while \(P \) expresses the optimal position of the particle population.

Terminal conditions: The algorithm has been convergence or achieved specified number of iterations.

The algorithm flow is as Fig. 1, from which we can see that the solving process contains five steps.

Step 1: Initialization of particle swarm

Step 2: Calculate the fitness value according to Eq. 14 and the position of each particle and then record the optimal position of all the particles

Step 3: Update the velocity and position of each particle by Eq. 15 and 16

Step 4: Judge whether the terminal conditions are met. If yes, then turn into step 5, otherwise, turn into step 2

Step 5: Determine the operation plan of scheduled freight trains according to the optimal position of the optimal particle

CASE ANALYSIS

The model and algorithm is verified by intercepting a part network from actual railway network as an example. The specific network structure is shown as Fig. 2. The circles express the railway stations which deal with the services of scheduled freight trains, while the edges express railway section between two stations and the sign beside each edge is the section number and section distance. In Table 1, car flow volumes suitable for scheduled freight train of all station pairs are given. From the table, we can see that there are only one car flows of one direction, because of supposing the freight flows of both directions are balanced and we just compute the train plan of one direction, so that the calculation will be simplified. In Table 2, they are parameter values of running time, requirement number of train formation cars and carrying capacity in each section. With regard to the carrying capacity of each section, the capacities taken up by passenger trains and other high grade trains have
Fig. 2: Structure of railway physical network

Table 1: Car flow volume suitable for scheduled freight train of each station pair

<table>
<thead>
<tr>
<th>Start station</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
<th>S11</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>18</td>
<td>24</td>
<td>16</td>
<td>15</td>
<td>25</td>
<td>32</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>S2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>19</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>20</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>24</td>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>0</td>
<td>8</td>
<td>21</td>
<td>6</td>
<td>16</td>
<td>11</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>14</td>
<td>10</td>
<td>7</td>
<td>25</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>0</td>
<td>4</td>
<td>14</td>
<td>10</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Running time, requirement number of train formation cars and carrying capacity in each section

<table>
<thead>
<tr>
<th>Serial number</th>
<th>Section</th>
<th>Running time</th>
<th>Number of formation cars</th>
<th>Carrying capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e₁</td>
<td>4</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>e₂</td>
<td>3</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>e₃</td>
<td>7</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>e₄</td>
<td>4</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>e₅</td>
<td>3</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>e₆</td>
<td>4</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>e₇</td>
<td>2</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>e₈</td>
<td>3</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>e₉</td>
<td>4</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>e₁₀</td>
<td>5</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>e₁₁</td>
<td>4</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>e₁₂</td>
<td>3</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>e₁₃</td>
<td>2</td>
<td>30/40</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>e₁₄</td>
<td>6</td>
<td>30/40</td>
<td>10</td>
</tr>
</tbody>
</table>

In the column of number of train formation cars, the values before and after the slash are, respectively, minimum number of scheduled freight train formation cars and maximum number of scheduled freight train formation cars

Table 3: Operation time of throw-hang and departure-and-arrival capacity in each station

<table>
<thead>
<tr>
<th>Serial number</th>
<th>Station</th>
<th>Operation time</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s₁</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>s₂</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>s₃</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>s₄</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>s₅</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>s₆</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>s₇</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>s₈</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>s₉</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>s₁₀</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>s₁₁</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

been deducted. In Table 3, the values of operation time of throw-hang and departure-and-arrival capacity in each station are shown. Being similar to the carrying capacities in Table 2, the arrival and departure capacity of each station is also that of having deducted the capacities taken up by other high grade trains. According to the operation realization of railway, the requirement service frequency of each train is set as 0.5 and the transit period being distributed to each train is given as twice of its running time in the shortest path so as to ensure the elasticity to a certain extent. Furthermore, the parameter values about operation cost are as follows, c₁ = 2350, c₂ = 100, c₃ = 1 and c₄ = 380.

Above algorithm is applied to solve the case. We set the size of swarm as 50 and the iteration is within 200 generations. Programme to realize the algorithm by Matlab7.1 and test the case in laptop with AMD Turion 64×2 CPU and 4G internal memory. After iterating 126 generations, the optimal objective function value being 6977.4 required. According to the running result, 15 scheduled freight trains are operated, of which 6 trains are through train, while the other 9 trains have throw-hang operation. Among the freight transportation demands being suitable for scheduled train, only two groups of car flows with total three cars do not be transported and the satisfied degree of shippers' transport volume demand is up to 99.5%.

For clarity, Table 4 is adopted to express the operation plan of scheduled freight train, including original departure station, final arrival station, throw-hang station, formation cars of each train, as well as the transfer scheme of car flows. It shows that some cars are transferred in one station, which may increase the transit time, but the transit time range of all the cars being transported can be meted, moreover, all cars run on the shortest path. Contrarily, if all car flows were transported by through scheduled train, the number of scheduled
trains would be up to 35 which led to great increase of the operation cost, meanwhile, the capacity of a certain sections and stations would not be met. Furthermore, for the number of through cars between some stations, the operation of through scheduled freight train will cause the waste of the capacity.

CONCLUSIONS

To optimize operation plan of scheduled freight train fully considering shippers’ demands has important significance on developing railway express freight transportation, as well as enhancing the service quality and market competitiveness of railway freight transportation. This study researched the optimization problem of operation plan for scheduled freight train to ensure shippers’ demands. At first, the characteristics of the operation plan for scheduled freight train and the demands of optimization were analyzed. Subsequently, the bi-objective model was established taking minimum operation cost of railway enterprise and maximum satisfied degree of shippers’ transport demand volume as objectives and taking service frequency, number of formation cars, transit time range, etc. as constraints. With regard to the two objective functions, one is minimum problem and another is maximum problem, move over, the dimension is different, so that it is difficult to design solving algorithm. Therefore, we transformed the bi-objective problem into a single objective problem firstly and then, we designed the solution algorithm based on particle swarm optimization, which was realized by Matlab7.1. Finally, a case is applied to show the feasibility of the model and the algorithm. The result shows that the model can synthetically reflect the profits of both railway enterprise and shippers and the solution time can meet the demand of railway operation, meanwhile, the algorithm has strong robustness.

However, to simplify the problem, we did not consider the influence of different kinds of cargos and we also assumed there was only one kind of scheduled freight train. In fact, there are many kinds of cargos suitable for transporting by scheduled freight train and there are several classes of scheduled trains. We will
study on the optimization problem of operation plan for multi kinds of cargos and multi grades of scheduled trains deeply in future.

ACKNOWLEDGMENT

This study was supported in part by National Natural Science Foundation Project of China under Grant No. 61263027 and 61104175, by Humanities and Social Science Foundation of Ministry of Education of China under Grant No. 12YJC630200 and as well as Young Scholars Science Foundation of Lanzhou Jiaotong University under Grant No.2012031.

REFERENCES

Li, Y., 2008. Research on transportation organization of railway express freight. Tongji University, Shanghai, China.

