Improved Mining Frequent Itemsets Algorithm Based on Sim

Jiang Yongchun, Li Xiaona, Cui Hairong, Xun Jiao and Wang Yingchun
Qingdao University, China
Shandong Normal University, China

Abstract: In order to solve the problem that apriori algorithm generates candidate itemsets, this study presents an improved mining frequent itemsets algorithm based on Sorting Index Matrix (SIM). The algorithm directly generates frequent 2-itemset through 1-itemset vector and the corresponding matrix multiplication sequentially. From the frequent 3-itemset, it establishes simple SIM for the frequent k-itemsets to realize itemsets leap-step search and connection with the SIM. The whole process just scans the database once, it does not produce candidate itemsets. Experimental result shows that the algorithm improves the efficiency of mining frequent itemsets.

Key words: Sorting index matrix, candidate itemsets, leap-step search, data mining algorithm

INTRODUCTION

Currently, information has become an important strategic resource, the large amount of data led to explosion of information. So, it becomes a very difficult task for people to obtain valuable information from these massive data. Data mining is a core of knowledge discovery in databases, it is a process that people extract potential useful and ultimately understandable knowledge from the database. It is a very important research subject that mining association rules from transaction data in the field of data mining research. The target of association rules mining is to mine association relationship either subjects or properties from large database and data warehouse, which is used to guide people to make correct decisions (Caiyan and Ruqian, 2006). Faced by the area of association rule mining to design an efficient mining algorithms of association rules, it is an important challenge. The apriori algorithm was proposed in Agrawal et al. (1993), it was a classic algorithms of frequent itemsets mining, its shortcomings was that it produced a large number of candidate itemsets and took up much memory space CPU processing time, so it was difficult to adapt to the mass data mining. To solve these problems, Yixia et al. (2006) constructed a matrix combined with the ordered characteristic structure of itemsets, it reduces the number of candidate itemsets. Mingxuan et al. (2009) used four pruning strategies to improve the efficiency of data mining. Although, these algorithms have been able to reduce the number of candidate itemsets or improve mining efficiency, but they still did not completely solve the candidate no longer to have this problem. This study presents association rule mining algorithm based on Sorting Index Matrix (SIM), which search the itemsets by the form of the index. So, this algorithm can avoid generation of candidate itemsets and repeatedly database scan of Apriori algorithm.

FEASIBILITY ANALYSIS

Association rules: Let i is the set of all items, it is called itemset, if the itemset contains k items, it is called k-itemset. Bo et al. (2008) let T is the transaction table, each transaction T, is a itemset, T I. Let A and B are the itemsets, transaction T, contains A, only if A T. An association rule can be represented as R: A B, of which A B and A B = φ.

Frequent itemsets: If the support degree of an itemset is greater than or equal to the pre-defined minimum support threshold, the itemset is called frequent itemsets (Ying et al., 2011).

Property 1: If the support count of the k-itemsets \{I_1, I_2, ..., I_k\} is not less than minimum support count, then, k-itemsets \{I_1, I_2, ..., I_k\} is called k-frequent itemsets (Jiali and Jia, 2010).

Maximal frequent itemset: In set of k-frequent itemsets, if the itemsets number in set is less than, then the set of k-frequent is called the maximal frequent itemset.

Property 2: If frequent (k-1)-itemsets still can generate frequent k-itemsets, then the itemsets number of frequent (k-1)-itemsets must be greater than or equal to k.
Property 3: If the length of transaction T database within a database is less than $(k+1)$, then transaction T needn't be scanned when generating $(k-1)$-frequent itemsets from k-frequent itemset.

Apriori algorithm: Apriori algorithm uses an iterative method, which is called layered search, k-itemsets are used to explore $(k+1)$ itemsets. First, when this algorithm scans the database, it collects items of meeting the minimum support count, so as to denote the collection of frequent 1-itemsets as. Then, L_k is used to find frequent collection of 2-itemsets L_2, and L_2 is used to find frequent collection of 2-itemsets L_3. Continue to do so until you can no longer find frequent k-itemsets.

The process of getting L_k from L_{k-1} need two steps: connecting steps and pruning steps:

- Connecting steps: Connecting L_{k-1} and itself to generate the set of k-candidate itemsets, marked it as C_k. Let I_1 and I_2 are itemsets of L_{k-1}, $I_{1,2}$ is marked as the jth of I_1. For convenience, it is assumed that the transactions or items of itemsets are sorted by dictionary order. For $(k-1)$ itemsets I_{k-1}, it means that the items are sorted in sequence, so $I_{k-1}<I_{k-2}<...<I_{k-1}$. Performing the connection of L_{k-1} among them, I_1 and I_2 are connectable. If $(I_{1,1} + I_{1,2})/(I_{k-1}) \cap (I_{1,1} - I_{1,2}) \cap ... \cap (I_{1,1} + I_{1,2}) \cap ... \cap (I_{1,1} + I_{1,2}) \cap ...$, $I_{1,1} = I_{1,1}$ ensures not to generate repeating. The result itemsets, which connect the I_1 and I_{k-1} is $I_{1,1}$, $I_{1,2}$, ..., $I_{1,1}$, $I_{1,1}$

- Pruning steps: C_k is superset of I_{k-1} that means all the frequent k-itemsets are included in C_k. Scanning the database to determine the count of each candidate in C_k, thereby to determine L_k. But, maybe C_k is very large, which leads to large calculation amount. In order to compress C_k, Apriori property can be used by these methods mentioned later. whichever, non-frequent $(k-1)$-itemset is all not subset of frequent k-itemset. Therefore, if the subsets of $(k-1)$ items among the candidate k-itemsets are not in the L_{k-1}, then the candidate k-itemsets can not be frequent, which can be deleted from C_k. Let the length of transaction database is n, in order to generate frequent itemsets which the maximum length is m, Apriori algorithm will scan the database m times, its complexity degree is $\Omega(n^m)$. And Apriori algorithm will produce a large number of candidate itemsets. Based on these two shortcomings, this study presents a new algorithm to generate frequent itemsets, which overcomes the two problems that Apriori algorithm exists.

Frequent itemsets mining based on sorting index matrix

Related definitions

1-Itemsets matrix: Let 1-itemsets matrix $V_j = (d_{1j}, d_{2j}, ..., d_{nj})$, among them:

$$
\begin{align*}
 d_{ij} &= 0, i \notin T_j, \\
 d_{ij} &= 1, i \in T_j, 1 \leq i \leq n, 1 \leq j \leq m,
\end{align*}
$$

$V = (V_1, V_2, ..., V_m)$ is called 1-Itemsets Matrix.

Sort index matrix: When the frequent $(k-1)$-itemsets produce k-itemsets $(k \leq 3)$, it is needed to construct sort index matrix of frequent 1-itemsets, it will achieve the leap-step search and connection. Its structure is defined as follows:

Columns of the sort index matrix are composed of serial number, descending 1-itemsets and the itemsets’s support counts (sup).

Rows of sort index matrix are produced by descending order frequent $(k-1)$-itemsets $(k \leq 3)$.

Serial number, namely the index number, is obtained row by row, in alphabetical order such as a, b, c, e, c, it is used to record the next position of an itemset’s occurrence. The itemset support count sup expresses the support count of frequent $(k-1)$-itemset.

If a line of frequent $(k-1)$-itemsets is I_1, Firstly, the columns I_1 and columns I_1 all set to 1 in some row, the other columns set to 0, each row is operated in such a way, a matrix containing 0 and 1 is obtained. And then 0-1 matrix is indexed.

Arithmetical description: Let the number of transactions as n, the number of frequent 1-itemsets as m, the minimum support_count is 2. Combined with Classic Apriori algorithm, association rules mining algorithm based on sort index matrix is described as:

Step 1: Using the formula sup_count:

$$
(1) = \sum_{i=1}^{m} d_{ij}
$$

it can calculate the sup_count of each items and delete the itemsets which support counts is less than 2 and get frequent 1-itemsets L_1, it can also form descending 1-itemsets and 1-itemsets matrix $|A| = (V_1, V_2, ..., V_m)$ by sorting the size of sup_count of L_1.

2247
Table 1: Sort index

<table>
<thead>
<tr>
<th>Serial number</th>
<th>I₂</th>
<th>I₃</th>
<th>I₄</th>
<th>I₅</th>
<th>I₆</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2: Sort index matrix

<table>
<thead>
<tr>
<th>Serial number</th>
<th>I₀</th>
<th>I₁</th>
<th>I₂</th>
<th>I₃</th>
<th>I₄</th>
<th>I₅</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,1,0,1,0)</td>
<td>b</td>
<td>B</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(1,1,0,1,0)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: 1-itemsets matrix

Step 2: Multiplying column vector \(v_j^T \) (1 ≤ j ≤ m) by matrix \([A · V_j]\) to get \(L_2\).

Step 3: Constructing the sort index matrix, leap-step search k-itemsets by traversing the index numbers.

Case analysis: The transaction database is set up as shown in Table 1. It is assumed that the min-support degree is 20%, the transaction number is 10, the min-support count of this itemset is 2.

Formatting frequent 1-itemsets: Traversing transactions database, calculating support count of each itemset in Table 1, deleting the non-frequent itemsets \(I_0 \), getting the descending 1-itemsets \((I_0, I_1, I_2, I_3, I_4) \) by sorting their support counts 1-itemsets, 1-itemsets matrix, as shown in Fig. 1.

Multiplicates the vector and matrix to get frequent 2-itemsets: For matrix \([A]\), each itemset corresponds to a vector, 5 itemsets corresponds to 5 vectors:

- \(V_1 = (0,1,1,0,0,1,0,1,0,1)^T \)
- \(V_2 = (0,0,0,0,1,0,1,1,1)^T \)
- \(V_3 = (0,0,0,0,0,0,0,0,0,0)^T \)
- \(V_4 = (0,0,0,0,0,0,0,0,0,0)^T \)
- \(V_5 = (0,0,0,0,0,0,0,0,0,0)^T \)

Multiplicates the vector \(V_j^T \) and matrix \((V_1, V_2, V_3, V_4, V_5)\), figure out to the frequent 2-itemsets that begins with the column corresponding to the \(V_j \).

- \(V_1^T = (V_2, V_3, V_4, V_5) = (4,4,2,2) \), we can get 4 2-itemsets beginning with as follows: \(I_2 I_4 \), \(I_3 I_4 \), \(I_3 I_5 \), \(I_3 I_2 \).

- \(V_2^T = (V_3, V_4, V_5) = (2,4,1) \), we can get two 2-itemsets beginning with \(I_2 \) as follows: \(I_2 I_4 \), \(I_2 I_5 \), inside, 2-itemset of \(I_2 I_4 \) is discarded, because its support count is less than the minimum support count.

- \(V_3^T = (V_4, V_5) = (1,0) \), no frequent 2-itemsets whose support count is less than the minimum support count are produced.

- \(V_4^T = (V_5) = (0) \), it does not produce 2-itemsets.

After being arranged, six frequent 2-itemsets are got, that has \(L_2 = \{i_1 i_2(4), i_1 i_4(4), i_2 i_5(2), i_3 i_2(2), i_3 i_4(4), i_5 i_2(2)\} \).

FORMING 3-ITEMSETS: Six frequent 2-itemsets are sorted, there is only one 1 corresponding to the column of \(I_0 \). It means that itemset \(I_3 I_4 \) can not be connected with the other 2-itemsets, so delete the rows and the columns corresponding \(I_0 \). As shown in Table 1.

The serial numbers are alphabetic list of lowercase letters of \(a,b,c,d \) and \(e \), which are the row numbers of the itemset, they just play a role of the row index:

- Firstly scan the 1th row of \(I_2 \), leap-step search the column where \(I_0 \) is located, go to the third row by the index number \(c \), where \(I_1 i_2 \) is located row, connect rows 1 and 3 to get frequent 3-itemsets \(I_1 I_2 \), then connect the first row and the last row to get frequent 3-itemsets \(I_1 I_2 \). The support count of \(I_1 I_2 \) is 4, while \(I_1 i_2 \) and \(I_1 i_4 \) are respective 4 and 2, so the support of \(I_1 i_2 \) is 2

- Secondly continue to scan from row 2 to row 3, it can not stop until the last row. In this step, Apriori algorithm is to form candidate 3-itemsets and it produce 6 itemsets as well, it is not conducive to the improvement of the efficiency of the algorithm.

- Thirdly after arranged, two 3-itemsets are got, it expressed as \(L_3 = \{i_1 i_2 i_4(4), i_1 i_2 i_5(2)\} \). Then, construct sort index matrix of \(L_2 \), as known from table 2, no index number can meet the conditions of downward connection, therefore, no frequent 4-itemsets will be produced, algorithm ends

The algorithm result as follows:

Frequent 1-itemsets is \(L_1 = \{i_7, i_6, i_6, i_6, i_6, i_6\} \)

Frequent 2-itemsets is \(L_2 = \{i_2 i_4(4), i_2 i_4(4), i_2 i_5(2), i_3 i_2(2), i_3 i_4(4), i_5 i_2(2)\} \)

Frequent 3-itemsets is \(L_3 = \{i_1 i_2 i_4(4), i_1 i_2 i_5(2)\} \)

Frequent 2-itemsets is \(L_4 = \{i_4\} \)

Efficiency analysis: Compared with Apriori algorithm in time. Suppose the length of transaction database is \(n \), we
want to produce maximum length m of frequent itemsets.

- The time complexity of Apriori algorithm to scan the database is $O(n^m)$ and the algorithm to scan the database when asked complexity $O(m)$
- In the entire process of generating frequent itemsets, Apriori algorithm generates candidate itemsets C_k and frequent itemsets L_k. However, in this study, the algorithm directly generates the frequent itemsets L_2
- Generate frequent 2-itemsets L_2, Apriori algorithm first connects frequent 1-itemsets L_1 to generate candidate 2-itemsets, then, carry on pruning operations on itemsets whose support count is less than minimum support threshold by scanning database. The algorithm of this study generates frequent 2-itemsets by multiplying the vectors and matrix to improve the efficiency of operations without pruning operations
- Beginning with $k=3$, in order to generate frequent k-itemsets, frequent $(k-1)$-itemsets need to create a simple sort index matrix, as the most important feature of the index is to accelerate the speed of information retrieval. It accomplishes the leap-step search with index number, the rows which can't meet the conditions of downward connection don't need to scan, so it improve the mining speed. While the total operation time of Apriori algorithm is time of scanning the database and generating candidate itemsets and pruning. Therefore, the running time of this algorithm is far shorter than Apriori algorithm

EXPERIMENT ANALYSIS

Experiment environment: This algorithm is accomplished by language C* in the condition of VS2008, Inter (R) Core (TM) i3 2.27 GHz/1.92 GB (OS is Windows XP).

Experiments automatically generate a data set by using the random function Random (), The database will produce a new data set as soon as input transaction $|T|$ and itemset $|I|$. This kind of data set fully embodies the efficient performance of the proposed algorithm without any artificial interference.

Contrast of the experiment results: Analyzing the experiment results from two expects:

- The comparison of running time with different support degrees makes shown in Fig. 2. It shows that the running time of this algorithm is always shorter than that of Apriori algorithm in the same data set ($|T| = 1000$, $|I| = 30$)

Fig. 2: Comparison of running time with different support degrees

Fig. 3: Comparison of running time with different data sets

- The comparison of running time of different datasets with the same support degrees makes shown in Fig. 3. It generates 5 datasets of different average length of transactions and itemsets, they are $D1|T| = 1000$, $|I| = 15$, $D2|T| = 200$, $|I| = 30$, $D3|T| = 1000$, $|I| = 30$, $D4|T| = 500$, $|I| = 30$, $D5|T| = 2000$, $|I| = 30$. It shows that the running time of this algorithm is always shorter than that of Apriori algorithm in each data set when the minimum support count is less than 28

CONCLUSION

With the help of the sort index matrix of this data structure, the structure achieves leap-step search and connection of the itemsets, then frequent itemsets are produced. It needs to scan the database only once during the whole process. Experiment results show that the algorithm is better than Apriori algorithm in time efficiency. Lower minimum support degree, the superiority of performance is more obvious. Our further research will
introduce this algorithm into cloud computing and study the algorithm in the field of computer forensics under the condition of cloud computing applications.

REFERENCES

