Economic Investigation of Geothermal Energy in Low-temperature Granary

Wang Haixia, Zhao Qing and Wang Jun
School of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou, 450001, Henan, China

Abstract: Food security and grain store energy consumption get much more important worldwide step by step. Construction and transformation of low-temperature granary is gradually increasing in our country. In the cold source scheme selection, technology about shallow geothermal energy attracts the attention of many engineers and technicians for its energy saving and environmental protection. This article introduces the application of geothermal energy in the construction of a low temperature granary in Southwest China in the design and economic aspects.

Key words: Geothermal energy, low grain storage, economics

INTRODUCTION

Shallow geothermal energy is solar energy absorbed and stored by soil and groundwater. It is usually less than 25°C. And it is different from the deep geothermal energy that below 5 km. For it is hardly affected by region and climate, its temperature is relatively constant. So, it's a very important new energy. Development and utilization of shallow geothermal energy for heating and cooling has been an important alternative energy source. It has been widely applied in civil air-conditioning and heating (Shen and Xu, 2010). In this study, a low temperature granary in Southwest China using shallow geothermal energy is introduced.

OVERVIEW OF THE PROJECT

In this project there are 4 warehouses (126×24 m), with store capacity 67,000 tons and 4 squat siloes with diameter of 25 m, loading grain hight of 18.5 m, with store capacity of 2.63 million tons. Outdoor summer air-conditioning temperature is employed as outdoor meteorological parameter. The calculation parameters of entering grain are as follows, maximum moisture content is 15%, the highest grain temperature is 25°C. Design parameters of store is as follows. Grain storage temperature is 12°C and the relative humidity is less than 10% deviating form 60%.

CALCULATION OF COLD LOAD OF THE GRANARY

Based on the above parameters, assuming the height of the bulk grain in the warehouse is 8 m and the cold loads of starting stage and regular running stage of the refrigeration units are calculated separately. The quantity of cooling required by each type of single granary is shown in Table 1 and 2.

Cold load of the refrigeration unit in starting stage is (Wang, 2009):

\[Q = \varepsilon(Q_1+Q_2+Q_3+Q_4+Q_5) \]

Cold load in regular running stage of the refrigeration unit is:

\[Q' = \varepsilon(Q_1+Q_2+Q_3+Q_5) \]

<table>
<thead>
<tr>
<th>Grainary size</th>
<th>Construction area (㎡)</th>
<th>Q₁ (kW)</th>
<th>Q₂ (kW)</th>
<th>Q₃ (kW)</th>
<th>Q₄ (kW)</th>
<th>Total cold load (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>126×24 m</td>
<td>3024</td>
<td>156.6</td>
<td>111.1</td>
<td>8</td>
<td>11.1</td>
<td>286.7</td>
</tr>
<tr>
<td>1.1Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>315.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grainary size</th>
<th>Construction area (㎡)</th>
<th>Q₁ (kW)</th>
<th>Q₂ (kW)</th>
<th>Q₃ (kW)</th>
<th>Q₄ (kW)</th>
<th>Total cold load (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter 25 m</td>
<td>490</td>
<td>94</td>
<td>46.2</td>
<td>4.7</td>
<td>6.5</td>
<td>151.2</td>
</tr>
<tr>
<td>1.1Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>166.4</td>
</tr>
</tbody>
</table>

Corresponding Author: Wang Haixia, School of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou, 450001, Henan, China
Where:

- \(e \) = Safety factor, usually 1.1-1.3
- \(Q \) = Cold load in starting stage
- \(Q' \) = Cold load in regular running stage
- \(Q'' \) = Cold load of the refrigeration unit in starting stage
- \(Q_s \) = Cold load generated by heat gaining of building envelope
- \(Q_g \) = Cold load generated by grain cooling
- \(Q_r \) = Cold load generated by grain respiration
- \(Q_t \) = Cold load generated by temperature falling of air inside the granary
- \(Q_b \) = Cold load generated by the operation of blower
- \(Q_m \) = Cold load generated by management, such as illuminating and opening doors, etc.
- \(Q_v \) = Cold load generated by ventilation
- \(Q_c - Q_h \) = Are the main components of the cold load. The other elements take a back seat in the cooling load, then they can be ignored (Liu, 2010)

DETERMINE OF COOLING MODE

In order to improve the utilization of refrigeration unit and save the initial cost in equipment investment, two granaries were put into a group. Yin and Yu (2006) The scheme will meet the cooling requirement of two rooms in one granary simultaneously that is the scheme will also satisfy 6 rooms in two granaries at different time. The following scheme selection is based on such a consideration. For local groundwater resource is relatively abundant and geological conditions can agree with the recycling of the underground water. Employing groundwater as a source of water source heat pump units, a closed loop of air cooling system is formed by direct expansion blower with supply and return air ducts. Air is sent by underground trenches. The return air ducts built up with many branches are above the granary. When the granary needs cooling treatment, supply and return air valves are opened. After handled by the direct expansion chillers, the cool air gets through the ducts then penetrates the grain from the bottom to the top. Exchanging heat thoroughly and finally reaching the top of grain bulk, the air returns to the unit through the ducts. Then air goes the next cooling ventilating cycle. The supply and return valves are shut off after the cooling process.

CONFIGURATION OF CRYOGENIC SYSTEM EQUIPMENTS OF WAREHOUSE

Considering two warehouses as a configuration unit, configure 4 direct expansion refrigeration units for each unit. The nominal cooling capacity of each unit is 62.5 kW. Such a configuration scheme can meet the full cooling requirement of two rooms. The specific device configuration is shown in Table 3. The valves and connections in water and air loops and the insulation materials are determined by the project itself. Such materials above are not listed in the table.

CONFIGURATION OF CRYOGENIC SYSTEM EQUIPMENTS OF SQUAT SILO

Considering a single squat silo as a configuration unit, configure 4 direct expansion refrigeration units for each unit. The nominal cooling capacity of each unit is 80.8 kW. Such a configuration scheme can satisfy the cooling requirement of 6 squat silos at different time. It can also meet the full cooling requirement of two squat silos at the same time. The specific equipment configuration is shown in Table 4. The valves and connections in water and air loops and the insulation material are determined by the project itself. Such materials above are not listed in the table.

ECONOMIC ANALYSIS

For single refrigerating unit of warehouse, the initial investment and running costs of grain cooler and direct expansion water source heat pump are compared as follows.

| Table 3: Major equipment configuration of warehouse cooling unit |
|------------------|------------------|------------------|
| **Equipment** | **Format** | **Quantity** | **Remark** |
| Refrigeration unit | HGB860A | 4 | Motor power is 21.5 kW unit⁻¹ and nominal cooling capacity is 62.5 kW |
| Pump | 23 (m² h⁻¹) | 2 | One is running and the other is spare |
| Rotary filter | XJL-800 | 1 | |
| Well | Diameter is 300 mm | 3 | The depth is 80 m and volume flow rate is 40 m³ h⁻¹ |

| Table 4: Major equipments of squat silo cooling unit |
|------------------|------------------|------------------|
| **Equipment** | **Format** | **Quantity** | **Remark** |
| Refrigeration unit | HGB860A | 4 | Motor power is 28.5 kW unit⁻¹, nominal cooling capacity is 80.8 kW |
| Pump | 35 (m³ h⁻¹) | 2 | One is running and the other is spare |
| Rotary filter | XJL-800 | 1 | |
| Well | Diameter is 300 mm | 3 | The depth is 80 m and volume flow rate is 40 m³ h⁻¹ |
Table 5: Initial cost of major equipments of geothermal cooling unit

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Format</th>
<th>Quantity</th>
<th>Price (Y)</th>
<th>Total Cost (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigeration unit</td>
<td>HGB60A</td>
<td>1</td>
<td>325,000</td>
<td>1,300,000</td>
</tr>
<tr>
<td>Pump</td>
<td>25 (m³ h⁻¹)</td>
<td>2</td>
<td>3,500</td>
<td>7,000</td>
</tr>
<tr>
<td>Rotary filter</td>
<td>XLJ-800</td>
<td>1</td>
<td>6,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Well</td>
<td>Diameter is 300 mm</td>
<td>3</td>
<td>15,000</td>
<td>45,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1,358,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Initial cost of major equipments of grain cooler

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Format</th>
<th>Quantity</th>
<th>Price (Y)</th>
<th>Total Cost (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain cooler</td>
<td>GLA50</td>
<td>4</td>
<td>350,000</td>
<td>1,400,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1,400,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Power consumption per ton of grain

<table>
<thead>
<tr>
<th>Grain temperature</th>
<th>Power consumption (kWh)</th>
<th>Power consumption per ton of grain kWh/(t·°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.6~19.6</td>
<td>622.80</td>
<td>0.192</td>
</tr>
<tr>
<td>21.6~18</td>
<td>1152.00</td>
<td>0.198</td>
</tr>
<tr>
<td>21.6~16</td>
<td>2106.36</td>
<td>0.232</td>
</tr>
<tr>
<td>21.6~15</td>
<td>2606.76</td>
<td>0.242</td>
</tr>
<tr>
<td>21.6~13</td>
<td>3975.60</td>
<td>0.285</td>
</tr>
<tr>
<td>21.6~12</td>
<td>4656.00</td>
<td>0.299</td>
</tr>
</tbody>
</table>

Table 8: Cooling time for 1 centigrade of whole storage

<table>
<thead>
<tr>
<th>Grain temperature change (°C)</th>
<th>Cooling time (h)</th>
<th>Grain storage capacity (t)</th>
<th>Average cooling time of per ton grain (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.6~15</td>
<td>76.0</td>
<td>1620</td>
<td>11.52</td>
</tr>
<tr>
<td>21.6~10.3</td>
<td>186.5</td>
<td>1620</td>
<td>16.50</td>
</tr>
<tr>
<td>15~12</td>
<td>61.0</td>
<td>1620</td>
<td>20.33</td>
</tr>
<tr>
<td>12~10.5</td>
<td>49.5</td>
<td>1620</td>
<td>29.12</td>
</tr>
</tbody>
</table>

Initial cost: For the quantity of pipes and ducts and other accessories is almost the same, in this comparison the prices of valves in water loop and air duct, supply and return air ducts, connecting pipes, insulation materials are not included. The initial costs of cooling scheme with geothermal system and grain cooler are shown in Table 5 and 6 separately. The tables show that the initial costs of the two schemes are nearly same. The scheme with geothermal energy takes some advantage slightly.

Comparison of running cost: According to the refrigeration scheme, compute the cooling speed of the entire grain bulk and the power consumption per ton of grain when the ambient temperature is 23~25°C at day time. The results are shown in Table 7 and 8. At normal performance, the power consumption of grain cooler is different according to the style of the storage. The average power consumption of warehouse is 0.5~0.75 kWh/(t·°C) (Wang and Li, 1994). The power consumption of geothermal energy system is relatively small. Then it agrees with the purpose of energy saving.

Average power consumption of per ton grain is 0.241 kWh/(t·°C).

CONCLUSION

Shallow geothermal energy enriches the diversification of the engineering application of low temperature grain granary solutions. Compared with the grain cooler, the initial cost and the running cost of geothermal energy system have some advantage. In the construction of low temperature granary, the renewable energy should have priority. And enviromental protection is another important factor in the chosen of refrigeration scheme.

REFERENCES