Aluminum Electrolysis Fault Diagnosis Research Based on Principal Component Analysis

Jiejia Li, Xiaoyan Han and Peng Zhou
School of Shenyang Jianzhu University, 110168, Shenyang, China

Abstract: According to the characteristics of the aluminum electrolysis fault, the principal component analysis and improved BP network are used for extracting fault feature, the improved BP neural network can extract the fault feature and can also be used as preliminary diagnosis of the fault, thereby electrolytic method for multiple faults diagnosis of three neural networks aluminum is taken use, this method analyzes the deficiency of single neural network and two stage neural network fault diagnosis and in order to form the decision fusion network, the wavelet analysis and neural network are combined organically. The simulation results show that: the aluminum electrolysis fault diagnosis research based on principal component analysis has the characteristic of large amount of fault forecast.

Key words: Fault diagnosis, principal component analysis, improved BP network

INTRODUCTION

The structure of equipment in aluminium electrolytic process is complex, The fault is varied and occurs frequently, sometimes kinds of faults occur at the same time, effective fault diagnosis is the key to ensure safety and stable production. In the single neural network for aluminum electrolysis for multiple fault diagnosis, if all the fault samples are training in the same network, with the increase of fault types and network units the number of accidents are increasing, the possibility of fault has increased and the network generalization, association ability will be greatly reduced, especially for the multiple fault recognition ability will be very weak. In order to overcome the defects of single network, using the combined method of sub network, namely each fault corresponds to a neural network, each network output layer with only one node, the number of nodes in input layer can be different, depending on the fault type, the output is the input of decision-making neural network and it gives the final diagnosis results (Bae, 2010). Since, the output in the diagnosis of many sub network contribution to the diagnosis results are not large, the decisive factor is often only two or three sub networks. That is to say, a lot of sub network are useless sub network more, the waste greater. So this study adopt three neural networks, the first level neural network made a tentative diagnosis of fault, to determine which sub network began to work in second level network, second level network result is input to the third network, third network output the final diagnosis results.

NETWORK MODEL

Structure of fault diagnosis model: In order to realize single fault and multi fault diagnosis in the process of aluminum electrolysis fat the same time, established the fault diagnosis model of three stages of, first level mainly includes principal component analysis and preliminary diagnosis network, second level includes anode effect sub network, heat sink sub networks, cold trough sub network and rolling aluminum sub network, third level is the decision fusion network (Barakat et al., 2011). The structure of fault diagnosis model as shown in Fig. 1.

The process in this model is that the output of improved BP network in first network excite each sub network in second level, the third network gives diagnostic results. The diagnosis rules are as follows:

- If the value of output of the node in the first network is greater than 0.1, then the node corresponding to the sub network in second level work
- If the value of output of the node in the first level is less than 0.1, it may be considered that the detected fault samples without failure or it is a new fault model
- If the value of output of each sub network in the second level is more than 0.5, it can be considered that the corresponding fault exists and the output value represents the fault severity
- Outputs of the second level network is the inputs of the third level network, the third network gives diagnostic results

Corresponding Author: Jiejia Li, School of Shenyang Jianzhu University, 110168, Shenyang, China
ESTABLISH THE MODEL OF THE SUB FAULT DIAGNOSIS

Principal component analysis: By using characteristic analysis and fault diagnosis model based on improved BP neural network principal component extraction in this study, the principal components analysis method is to remove the not important parameters, using the new variable less instead of more variables, fault related information in the new variables as much as possible to retain the original more variables reflect thus, reduce the dimension of input, decoupling, the variables are simplified. The basic idea is: in the study between the various variables based on the relationship of the original, multiple variables are combined properly, combined into some comprehensive index, comprehensive index of this from a combination of variables is called principal components (Lu and Zhang, 2012). The anode effect as an example, the anode effect nonlinear principal component transform as shown in Fig. 2.

![Diagram of fault diagnosis model]

The specific steps are as follows.

With the input data samples (p = 1, 2, ..., P). Each sample was i(i = 1, 2, ..., I). There are I = 8 variables $\delta_1, \delta_2, \delta_3, ..., \delta_8$ in this study:

- To transform the original variables $\delta_1, \delta_2, \delta_3, ..., \delta_8$, get:

$$\zeta_\mu = \ln \delta_\mu - \frac{1}{I} \sum_{i=1}^{I} \delta_\mu$$

(1)

- Standard processes:

$$\zeta_\mu = \frac{\zeta_\mu^0 - \bar{\zeta}_\mu}{\sigma_\mu}, \quad p = 1, 2, ..., P, i = 1, 2, ..., I$$

(2)

Among them $\zeta_\mu^0, \bar{\zeta}_\mu$ are the P component of the original vector ζ_μ^0 and normalized vector $\bar{\zeta}_\mu$:

$$\bar{\zeta}_\mu = \frac{1}{I} \sum_{i=1}^{I} \zeta_\mu^i$$

(3)

$$\sigma_\mu = \frac{1}{I-1} \sum_{i=1}^{I} (\zeta_\mu^i - \bar{\zeta}_\mu)^2$$

(4)

Calculated the logarithm center sample covariance matrix of the matrix Composition by ζ_μ:

$$S_\mu = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1p} \\ r_{21} & r_{22} & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & r_{pp} \end{bmatrix}$$

(5)

$$r_{ij} = \frac{\sum_{k=1}^{I} (\zeta_{\mu_k} - \bar{\zeta}_\mu)(\zeta_{\mu_k} - \bar{\zeta}_\mu)}{\sqrt{\sum_{k=1}^{I} (\zeta_{\mu_k} - \bar{\zeta}_\mu)^2} \sqrt{\sum_{k=1}^{I} (\zeta_{\mu_k} - \bar{\zeta}_\mu)^2}}$$

(6)

Use Σ_μ figure out the nonlinear principal component of the sample data. With the first principal component $F_1 = a_1x_1 + a_2x_2 + ... + a_px_p = ax$, the variance is:

$$V(F) = a_1^2 \Sigma_1 = a_1^2 \left[\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_\pi \end{array} \right] U_\lambda_1$$

7077
The original variables

Nonlinear principal component

Change rate of the cell resistance

Mass concentration

Voltage of the cell

Variation of the current

The change of temperature

Increment of the voltage

Temperature

Current in series

Fig. 2: Nonlinear principal

\[a^T \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_k \end{array} \right] = \lambda_1 \left[\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_p \end{array} \right] a_1 \]

Suppose the Characteristic value \(\lambda_i \geq \lambda_j \geq \cdots \geq \lambda_k \) of \(\Sigma_x \), the standard unit of the corresponding feature vector \(a_i, a_j, \ldots, a_p \). The accumulated variance contribution rate is:

\[\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{p} \lambda_i} (n \leq l) \]

Determine the number of principal components in nonlinear cumulative contribution rate of 85% principle, nonlinear principal components identified as:

\[\chi = \zeta \cdot a \]
the single fault networks to identify multiple fault occur error or omission. We can according to the experience summarize the relations between fault and symptom of aluminum electrolysis. Therefore, according to the relationships between faults and symptoms to determine how to improved the BP neural network, for any fault nodes increases the direct connection between it and the symptom of fault node (Wu et al., 2012). Four kinds of common fault in the process of aluminum electrolysis are used for analysis: Anode effect Y1, heat sink Y2, cold sink Y3, rolled aluminum Y4. Features are cell resistance change rate δ_r, aluminum electrolytic concentration δ_c, slot voltage δ_v, current variation δ_i, temperature change δ_t, slot voltage increment δ_o, temperature δ_y, current in the series δ_i. The improved model as shown in Fig. 3.

The network is still using feedforward calculation equation, output of the node in the hidden layer:

$$O_j = f\left(\sum_i W_{ij}O_i + \theta_j\right)$$ \hspace{1cm} (10)

The output of the node in the output layer:

$$O_k = f\left(\sum_i W_{ik}O_i + \theta_k + \sum_i u_i \delta_i\right)$$ \hspace{1cm} (11)

where, u_i is the direct connection coefficients of the input and output layers. For there is no connected nodes, u_i is taken as 0. Network learning is still using the BP algorithm, where W, θ and the calculation equation and general BP algorithm, calculation equation for u_i:

$$u_i = u_i^0 - \alpha \delta_x (1 - y)x + \eta \Delta u_i$$ \hspace{1cm} (12)

Δu_i modify the weight U_i in the process of two iterations represents.

Model of second level neural network: Second level neural network is sub network, use the, Elman neural network is composed of input layer, hidden layer and output layer, structure layer. The model structure as shown in Fig. 4 (Amadou et al., 2009):

- **Input layer:** The input layer is the role of the input signal distribution system. According to the aluminum electrolysis fault generated to determine the mechanism of its quantity
- **Output layer:** The output layer is the output of network fault diagnosis probability
- **Structure layer:** Recursive computation structure layer, hidden layer unit is output to the memory of time value, corresponding to the hidden layer neurons number, according to the number of neurons in hidden layer make the decision
- **Hidden layer:** These neurons to extract useful information from the input mode, approximating a function, make the network learning complex tasks better

$$x_i(k) = x_i(k-1) + \alpha x_i(k-1)$$ \hspace{1cm} (13)

$$x(k) = y\left[\sum_{i=1}^{n} \alpha_{i} \left(\frac{x_{i}(k) - b_{i}(k)}{a_{i}(k)}\right)\right] k = 1, 2... i = 1, 2... m$$ \hspace{1cm} (14)

$$y(k) = g(w^2)(x(k))$$ \hspace{1cm} (15)
\[h(k) = w^h(k)x(k) + w^y(k)u(k) \]

(16)

Among them, \(a \) the feedback gain factor, \(w_{ij} \) is the connection weight matrix between input unit and hidden unit; \(w_{ij} \) is the connection weight matrix between input unit and hidden unit; \(w_{ij} \) is the connection weight matrix between hidden layer unit and output unit; \(g(\cdot) \) is the output layer transfer function, in this study is a linear function, i.e.:

\[y(k) = w^y(k)x(k) \]

(17)

Here, \(\omega^k \) is the output of the neural network.

Model of the third level neural network: Third neural network is the fusion and decision network, Third neural network is the wavelet neural network, the output of the pre sub network as the input of the network (Kai and Ming, 2011). There are 5 fault diagnosis network, so the number of node in the input layer in decision fusion network is 5. In this study, use the wavelet neural network in the aluminum electrolysis fault fusion, sample data for training and testing all captured in the field data. The fault diagnosis of aluminum electrolysis are anode effect, cold trough, heat trough, rolling aluminum and composite fault. The number of the decision network output is 8. Fault categories corresponding to the various output is given in Table 1.

Fusion and decision network using wavelet neural network structure, its structure as shown in Fig. 5, is composed of input layer, hidden layer and output layer. The principle is as follows: first, the choice of wavelet functions, then the wavelet functions instead of Sigmoid in the hidden layer of BP network, then still using correlation algorithm in BP network, linear superposition by wavelet basis function will be selected, thereby establishing a wavelet neural network.

EXPERIMENTAL RESULTS AND ANALYSIS

Anode effect prediction simulation results as shown in Fig. 6.

Figure 6 for the fault diagnosis simulation curve of anode effect, electrolytic tank during normal operation, the cell voltage is about 4.2 V, we can know from the simulation curve, before 18 min, didn't change obviously, electrolytic cell in normal working condition, at 18th min, slot voltage suddenly increased to 30 V, namely there are anode effect, at twentieth the cell voltage, return to normal working state, namely the anode effect fault release. The fault diagnosis model parameters, at about 15 min before the value of cell voltage, fault diagnosis model output Y1, Y2 and Y3 were compared in 0.0-0.2 change, stable, electrolytic cell in normal working condition, in 15-16 min Y1 output value increases, but not to fault prediction limit.
Fig. 6(a-e): Fault diagnosis simulation curve of anode effect value, after 16th min the output value of the fault diagnosis model of Y1 is greater than 0.5, indicated that the effect of impending electrolyzer, can be used for the prediction of anode effect; at 18th min, the values of fault diagnosis model output Y1 above 0.9, close to 1, can be seen that the electrolytic cell has an anode effect, forecast ahead for about 2 min.

CONCLUSION

This study using the principal component analysis, build the three level network fault diagnosis network platform of the preliminary diagnosis network, sub network fault diagnosis network, fusion and decision diagnosis network. Fusion the principal component analysis and neural network, wavelet and neural, sub network and decision information. Through the effective combination Realize the aluminum electrolysis fault diagnosis, using the ability of reduce the dimension of input, decoupling and nonlinear mapping of neural networks and the ability of learning and associative memory ability, make the fault diagnosis network has better fault-tolerant ability, logical reasoning ability and adaptive ability. The simulation results show that: the aluminum electrolysis fault diagnosis research based on principal component analysis has the characteristic of large amount of fault forecast, verification the validity of the fault diagnosis method.

REFERENCES

