http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 13 (4): 601-613, 2014
ISSN 1812-5638 / DOL: 10.3923/1t1.2014.601.613
© 2014 Asian Network for Scientific Information

Mechanized Verification of Security Properties of Transport Layer Security
1.2 Protocol with Crypto Verif in Computational Model

Bo Meng, Leyuan Niu, Yitong Yang and Zimao L1
School of Computer, South-Center University for Nationalities,
MinYuan Road # 708, HongShan Section, 430074, Wuhan, Hubei, China

Abstract: In modern society, many transactions have been processed through web-based applications. In order
to protect those critical applications against attacks, Transport Layer Security (TLS) protocol has been
implemented and widely deployed. The related literatures show that security analysis of TLS 1.2 protocol where
cipher suite is RSA encryption has not been implemented with mechanized tool in computational model. Hence
1n this study, Blanchet calculus 1s used to analyze TLS 1.2 protocol where cipher suite 1s RSA encryption with
mechanized tool crypto verif in computational model. The term, process and correspondence are used to model
authentication in TLS 1.2 protocol where cipher suite is RSA encryption. The result shows that TL.S 1.2 protocol
where Cipher suite 138 RSA encryption has the pre master key confidentiality and authentication from server to

client. The first mechamzed analysis on TLS 1.2 protocol where Cipher suite is RSA encryption 1s implemented
in computational model with active adversary in this study.

Key words: Verification, confidentiality, authentication, correspondence, protocol security

INTRODUCTION

With the rapid development of network technology
and Web technology, Internet has a strong influence
on all kinds of aspects m society. Many transactions
have been processed through web-based applications.
to protect the web-based applications
agamst passive and active attacks, TLS protocol
(http://tools.1etf.org/htm1/rfe5246) 1s widely deployed. The
latest version is TLS 1.2. The objective of TLS 1.2
protocol 1s to provide confidentiality and authentication
between two communicating parts. So, people have paid
a close attention to analysis and verification of its
security properties and want to get more confidence on it.

In order

For the sake of analyzing and proving the security
properties of security protocols and strengthemng the
confidence of the people, two approaches have been
proposed form the Dbeginning of the 1980s
(Meng, 2011). One is symbolic model which is also called
Dolev-Yao model and m which cryptographic primitives
are abstracted as perfect black boxes. Until now lots of
mechanized tools in this model have been developed, for
example, Casper, Isabelle, ProVerif and Scyther. Tn 2005
Ogata and Futatsugi (2005) formally analyzed m symbolic
model TLS protocol with CafeOBI method based on
equational reasoning. But the results of proof based on
symbolic model are not quite clear.

The other approach 1s computational model based on
complexity and probability. The attacker in computational
model is modeled as a probabilistic polynomial-time
machine. The computation model 1s more realistic but it 1s
difficult to mechamzed proof wntil the mntroduction of
mechanized tool Crypto verif (Blanchet, 2008) which is the
first mechanized tool with computational model. Tn 2012,
(Jager et al., 2012) firstly analyzed by hand TLS protocol
where Cipher suite 1s ephemeral Diffie-Hellman key
exchange protocol in standard model. In 2013,
(Fournet et al., 2013) used F7 refinement typechecker to
verify secwrity properties of TLS protocol implementation.

According to the related references, analysis of
security of TLS 1.2 protocol where Cipher Suite is RSA
encryption with mechanized tool in computational model
15 not found.

Owning to the previous analysis of TLS 1.2 protocol
is not quite clear, in this study, Blanchet calculus is used
to analyze TLS 1.2 protocol where Cipher suite is RSA
encryption with mechanized tool Crypto verif.

CONTRIBUTION AND OVERVIEW

During the past several years TLS protocol bas been
implemented and widely deployed in many web-based
applications. For the sake of verifying the security
properties of security protocols and improving the

Corresponding Author: Zimao Li, School of Computer, South-Center University for Nationalities,
MinYuan Road # 708, HongShan Section, 430074, Wuhan, Hubei, China Tel: 0086-18602707481

Inform. Techrol. 1, 13 (4): 601-613, 2014

its and

computational model have been developed. Symbolic

confidence on security, symbolic model
model is also called Dolev-Yao model; computational
model 15 based on complexity and probability. The later
model is more realistic owning to that the attacker is
modeled as a probabilistic polynomial-time machine.
According to the related references, until now it s not
existence that security analysis of TLS 1.2 protocol where
Cipher suite 138 RSA encryption with mechanized tool in
computational model.

So analysis of security properties of TLS 1.2 protocol
where Cipher suite is RSA encryption with mechanized
tool 1n computational model plays an important role in
security protocol field and 1s a sigmficant work. Hence in
this study, Blanchet calculus is used to analyze TLS 1.2
protocol where Cipher suite 13 RSA encryption with
mechanized tool.

The main contributions of this study are summarized
as follows:

The status of analysis in TLS1.2 protocol mncluding
in symbolic model and in computational model is
presented. Until now it 1s not existence that analysis
security of TLS 1.2 protocol where Cipher suite is
RSA encryption with mechanized
computational model

tool in
Applying Blanchet calculus in computational model
with active adversary for mechanized verification of
TLS 1.2 protocol where Cipher suite is RSA
encryption. Authentication expressed by
non-irjective or injective correspondence. Figure 1
shows the moedel of mechanized verification of TLS
1.2 protocol where Cipher suite is RSA encryption

The result shows that TLS 1.2 protocol where
cipher suite 1s RSA encryption has confidentiality of

18

TLS 1, 2 protocol

pre master key and authentication from server to client.
The first mechamized venfication on TLS 1.2 protocol
where cipher suite is RSA encryption in computational
model of in active adversary 1s implemented mn this study

RELATED WORK

In this part the status quo of the proof in TLS
protocol and 1its implementation based on symbolic model
and on computational model is presented. Until now there
does not exist that analysis of TLS 1.2 protocol with
mechanized tool in computational model.

In 1996, Wagner and Schneier (1996) analyzed Secure
Sockets Layer (SSL) 3.0 which 15 the former version of
TLS protocol with informal methed. They found some
active attacks which mamly include change cipher
spec-dropping, Key exchange algorithm spoofing and
version roll-back attack.

In symbolic model (Paulson, 1999) uses Isabelle to
automatically analyze TLS protocol and proves its
security claimed in TLS specification; in 2005 (Ogata and
Futatsugi, 2003) formally analyzed TLS protocol with
CafeOBJ method based on equational reasoming. The
results are that TLS protocol has the security properties
with the condition pre-master secrets cannot be leaked.

In computational model (Jonsson and Kaliski, 2002)
present an analysis of a variant of TLS hand shake
protocol where Cipher suite 1s RSA by hand. They argue
that TLS should use Tagged XKey-Encapsulation
Mechamism (TKEM) 1 rather than TKEM2; In 2008,
(Morrissey et af., 2008) analyzed TLS hand shake protocol
in random model by hand. They firstly proposed a
security model for key agreement protocel and then
analyzed TLS hand shake protocol with the condition that
Message Authentication Code (MAC) value 1s send in

[Model of TLS 1.2 protocol }—

Authentication

1

Active adversary model

A

| —

Blanchet calculus

A\ 4
A\ 4
Automated verification

]_

Cryptoverif

[
(
(
(
(

P

Computational model

Fig. 1: Model of mechanized verification of TLS 1.2 protocol where Cipher suite is RSA encryption

602

Inform. Techrol. 1., 13 (4): 601-613, 2014

the plaintext and showed that TL.S key agreement protocol
15 secure. However the version of TLS protocol with
Diffie-Hellman Key Exchange is not analyzed; In 2011
(Paterson et al., 2011) presented the scheme of
length-hiding authenticated encryption to analyze
security of TLS Record Protocol by hand. They found a
new distinguishing attack against TLS where vanable
length padding and short MACs are used; in 2012
Jager et al. (2012) firstly analyzed by hand TLS protocol
where Cipher suite is ephemeral Diffie-Hellman key
exchange mn the standard model. They introduced the
authenticated and confidential channel establishment
security model and showed that the combination of the
TLS hand shake protocol with the TLS Record Layer can
be proven secure.

the aspect of security properties of
implementation of TLS protocol is discussed. In 2009
Chaki and Datta (2009) presented the first framework to
automatically analyze authentication and secrecy of the
hand shake in Open SSL. In 2012, (Bhargavan et al., 2012)
firstly implemented TLS protocol 1.0 with language F#.
And then they designed a model extraction method to

Here

extract the abstract model. Finally, they used Crypto verif
to analyze security properties of TLS implementation in
F# In 2013 (Fournet et al, 2013) developed a new,
verified, reference implementation of TLS protocol 1.2 with
functional language F# And then they used the F7
refinement type checker to verify its security properties
and find a few new attacks.

REVIEW OF BLANCHET CALCULUS
AND MECHANIZED PROOF
TOOL CRYPTO VERIF

In thus section there 1s a brief overview of Blanchet
calculus (Blanchet, 2008) and the mechanized prover
Crypto verif, formalize TLS 1.2 protocol using it
(http://www.Crypto venif.ens.fr). Blanchet calculus 1s a
probabilistic polynomial calculus and has been developed
for the automated proof security protocols. In this
calculus, messages are bitstrings and cryptographic
primitives are functions operating on bitstrings. Blanchet
calculus includes terms and processes.

The mechanized prover Crypto verif can directly
prove security properties of cryptographic protocols in
the computational model in which the cryptographic
primitives are fumctions on bit-strings and the adversary
is a polynomial-time Turing machine. Tt also can prove
secrecy properties and events that can be executed only
with negligible probability.

603

Crypto verif can works in two modes: A fully
automatic and an mteractive mode. The mteractive mode,
requires a Crypto verif user to provide commands that
indicate the mam game transformations. Crypto venf 1s
sound about the security properties it shows in a proof
but properties it carmot prove are not necessarily mvalid.

REVIEW OF TLS 1.2 HAND SHAKE PROTOCOL

TLS 1.2 protocol mainly consists of hand shake
protecol and Record protocol which play a very important
role in TLS protocol. TLS Record Protocol is a layered
protocol and accepts messages from higher level layer to
be transmitted and partitions the data into blocks and
transmits the result. Received data is processed inversely
and then delivered to higher level clients. TLS 1.2
hand shake Protocol is one of the defined higher-level
clients of TLS 1.2 Record protocol and is used to establish
a secure session between server and client. In other
words TLS 1.2 hand shake protocol can provide the
authentication from server to client and confidentiality
of pre master key. Figure 2 describes the messages
exchanged between server and client in the sumplification
of TL.S 1.2 hand shake protocol.

In TLS 1.2 hand shake protocol there are two
commurmcating parties involved. One is client, the other
is server. Client and server use TLS 1.2 hand shake
protocol to share a common key and server use TLS 1.2
hand shake protocol to authenticate identity of client. The
simplification of TLS 1.2 hand shake protocol contains
seven messages which are client hello, Server hello,
Server certificate, Server hello done, client key exchange,
Client finished and Server finished:

Client Hello: = client version
[client random|session id)|
cipher suites|compression methods|extensions (1)

When a client wants to connect to a server, TLS 1.2
hand shake protocol requires client to send the Client
hello message. Client hello mainly includes client_version,
client random, session 1id, cipher suites,
compression_methods and extensions. Client version
parameter describes the version of the TLS protocol
through which the client wants to communicate with
server during this session. Client random parameter
describes the structure generated by client who 1s used to
prevent against replay attacks and to compute the master
key. Session id parameter is an important parameter in
client hello message. It describes the Identity (ID) of a

Inform. Techrol. 1, 13 (4): 601-613, 2014

Client ’

Server ’

(1) Client hello
Ll
(2) Server hello
d
-
(3) Server certificate
-
<
(4) Server hello done
d
-
(5) Client key exchange
Ladl
(6) Client finished
|-
Ladl
(7) Server finished
-
<

Fig. 2: TL.S 1.2 hand shake protocol

session that the client wants to use for this connection.
Cipher suites parameter describes that a list of the

cryptographic options supported by the client.
Compression_methods parameter describes the
compression methods supported by the client.

Extensions parameter describes some extended functions
need to be supported by server. The client generates
Client hello message and sends it to server:

Server hello: =c server version
[server random|session id|
chiper suites|compression methods|extensions (2)

When the server receives the Client hello message, it
then constructs the Server hello message. Server hello
message mainly includes server _version, server_random,
session_id, cipher suites, compression methods
extensions. Server generates message Server hello
according to the message Client hello. Server version
parameter is generated with the condition that the lower
of that required by the client in client version in message
Client hello and the highest supported by the server.
Server random parameter the structure
generated by server which is used to prevent against

and

describes

replay attacks and to calculate the master key. Session 1d
parameter describes that the server finds the session 1d

604

from the cache according to the session id from the
Session 1d 1n message Client hello. Cipher suites
parameter 1s from the cipher suites in Client hello
message. Here the value of Cipher suites 1s RSA public
encryption. Compression_methods parameter 1s from the
compression_methods in Client hello message. Extensions
parameter is from the extensions in Client hello message.
After the server constructs message server hello, it sends
it to the client.

Server certificate: = version|serial number
|algorithm indentifier|issuer|ute time|
server_subject name

|server_subject key info|signature (3)
After the server sends the message server hello to

the client, he constructs the message Server certificate to
the client. The message Server certificate 1s used to tell
the public key of the server to the client. The message
Server certificate mainly contains version, serial Number,
algorithm identifier, issuer, utcTime, server subject name,
server subject key info signature. the
server subject name server subject key info
parameters are mainly introduced. Server subject name

and Here

and

parameter 1s the name of server which 1s the owner of
certificate. Server subject key info parameter mainly

Inform. Techrol. 1., 13 (4): 601-613, 2014

Param N1, N2, N3.

Fun tkey, label, input: output
Fun kgen (key seed): key

N3 new r: keyseed; 'N1 of {(x:input): =

Elze new r2: output; r2

Expand IND_CCA2_public_key enc reakey seed, rsap key, rsaskey, cleartext , message, seed,
B o reaskgen, rsapkgen, enc,dec, injbot, Z,Penc,Penccoll

Fxpand Collision resistant_hashh (hashkey, hashinput, input , hash, phash)

Expand PRF_new (key seed, key, input, output, kgen, f, Pprf)

DefineTND CPA sym_enc (key seed, key, cleartext, ciphertext, seed, kgen, enc,dec, injbot, 7, Penc)
Define PRF_new (key seed, key, input, output, kgen, f, Pprf)

Equiv N3 new r: keyseed; new labelc:label; N1 of (x: input): = f (kgen(r), labelc, x)
==(N3 *Pprf (time+(N3-1¥*{time(kgen HN1 *time (f, maxlength(x}), N1, maxlength(x}=>

Find[unique] j==N1 such that defined (x[j],r2[j]} && otheruses(r2[j]) && x = x[]] then r2[j]

)

Fig. 3: Cryptographic assumptions

mcludes the public key of the server and the related
information on the public key:

Server hello done: = Server hello done

“4)

After the server sends the message server
certificate, he constructs the message server hello done
and sends 1t to the client. The server hello done message
is sent by the server to show that the end of the server
hello and associated messages. After sending server hello

done message, the server will wait for a client response:

Client key exchange: = Client key exchange
|Encrypted pre master secret (3)
After it receives the server hello done message, client
key exchage message is sent by the client. Client key
exchage message is the key message in TLS 1.2 hand
shake protocol which 1s used to tell the pre Master key to
the client in a secure way. Client key exchage message
maimnly includes key exchange algorithm and encrypted
pre master secret parameters. With this message, the
pre master key confidentiality 1s implemented by
transmission of the RSA-encrypted pre Master key used
here. Key exchange algorithm parameter describes the key
exchange algorithm. The value of key exchange algorithm
is RSA. Encrypted pre Master secret parameter describes
the structure of pre Master key confidentiality.
Pre master secret is generated by the client and is used
to generate the master secret:

Client finish: = Client finish (6)

605

Client fimished message 1s always sent immediately to
the server when the verification of the key exchange and
authentication processes were successful. The server
must verify that the contents are correct. Once the client
has sent client finished message and received and
validated the Server finished message from the server, the
client may begin to send and receive application data over
the conmection:

Server finished: = Server finished (7

A Server finished message is always sent immediately
to the client when the verification of the key exchange and
authentication processes were successful. The client must
verify that the contents are correct. Once the server has
sent server finished message and received and validated
the client finished message from the client, the server may
begin to send and receive application data over the
connection.

FORMALIZING TLS 1.2 HAND SHAKE
PROTOCOL IN BLANCHET CALCULUS

When TLS 1.2 hand shake protocol is formalized it
assumes that public-key encryption 1s indistinguishability
under adaptive chosen ciphertext attacks. Public key
signature 1s unforgeable against chosen-message attack.
Symmetric encryption is indistinguishability under
chosen-plaintext attacks and probabilistic symmetric
encryption. Hash function including hash functions
defined by us according to the requirements 1s collision
resistant and unforgeability against adaptive chosen
messages attacks. Figure 3 describes the cryptographic
assumptions in owr analysis of TLS 1.2 hand shake
protocol.

Inform. Techrol. 1., 13 (4): 601-613, 2014

Event server (output).

Event client (cutput).

Query x:output; event server (x)=—>client (x)
Query xX:output; injrevent server(x)=—xinj: client(x)
Query secret pre Master secret

Fig. 4: Query events and secret

Let TLS 1.2 process = initator process (| (™ client process)
| M2(server process)))

Fig. 5: TLS 1.2 hand shake protocol process

et initator process =
Start O);
New seed one: rsakey seed;
Let pkeyrsa: Rsapkey = rsapkgen (seed one) in
Let skeyrsa: Rsaskey = rsaskgen (seed one) in
New seed two: Keyseed;
Let signpkey: Pkey = pkgen (seed two) in
Let signskey: Skey = skgen (seed two) in
New kevhash:hash key;
¢ pkeyrsa, signpkey, key hash

Fig. &: Initator process

Here non-injective correspondences and injective
correspondences are used to model authentication from
server to client. Firstly non-injective correspondences are
used: Event server(x) =>inj: client(x) is used to
by Then
correspondences are used: Hvent inj: event server(x) =>
inj: client(x) is used to authenticate client by server.

authenticate client Server. ijective

Figure 4 describes the events and correspondence. Query
secret pre master secret 18 used to query the secrecy of
pre master secret.

The complete formal model of TLS 1.2hand
shake protocol where Cipher suite 1s RSA encryption in
Blanchet calculus is given in Figure. Figure 5-8 reports
the basic processes include mitator process, client
process in authentication and
secrecy forming the model of TLS 1.2 protocol. The

and server process

process TLS 1.2 process mn Fig. 5 15 assumed to run in
interaction with an adversary which also models the
network.

Initator process generates server’s public key
pkeyrsa and private key signp key for encryption mn
RSA scheme and public key signs key and private key
signs key, for digital signature in RSA cryptosystem.
it sends

Finally, signp key hash by the public

channel c.

606

In detail initator process in Fig. 6 firstly generates
server’s public key rsaky seed in the following procedure:
Initator process receives a null message on channel start,
sent by the adversary. Then, it chooses randomly with
uniform probability a bitstring seed one in the type rsakey
seed, by the construction new seed one: Rasaky seed. A
type T, such as raskeyseed, aims at denoting a set of
bitstrings. Then, initator process generates the server’s
public key pkeyrsa corresponding to the coms seed one,
by calling the public-key generation algorithm rsapkgen
(seed one). Siumilarly, imitator proccess generates the
secret key skeyrsa by calling rsaskgen(seed one).

After that initator process generates the server’s
public key signp key and private key signs key for digital
signature in RSA scheme in the following procedure:
Initator process chooses randomly with uniform
probability a bitstring seed two in the type by the
construction new seed two: Key seed. Then, mitator
process generates the server’s public key signp key
corresponding to the coinsseed two, by calling the
public-key generation algorithm pkgen (seed two).
Similarly, initator process generates the secret key signs
key by calling skgen (seed two). At the same time it
produces the hash key key hash in type hash key by the
construct new key hash: Hash key. Finally, it sends
pkeyrsa, signp key, hash by the public channel c. After
sending this message, the control passes to the receiving
process which 1s part of the adversary. Several processes
are available, which represent the roles of client and
server process. (|(!"'client process)|(!™server process)) is
the parallel composition of client process |!I™client
process, server process |!™Server process. It makes
simultaneously available the processes.

Client process is modeled as client process in
Blanchet calculus in Fig. 7. Client process generates the
client-version Client version in type version by the
construct new client version: Version, client-random client
random mn type by the construct new client random:
random and cipher-suites client Cipher suitesin type
cipher suites by the construct new client cipher suites:
Cipher suites. And then it produces Client Hello message
message one in type message using the fumetion concat
A (client version, client random, null, client cipher suites)
by the construct let message one: Message = concat A
{client version, client random, null, client phersuites) .
Finally, it sends message one, one message on by the
public channel through the construct <1 {one, message
one}.

After that client process receives the message two,
message two_s in type message from the public channel

Inform. Technol. J., 13

(4): 601-613, 2014

Let client process =
co;
(*Client hello®)
New clientversion: Version;
New clientrandom: Random;
New client cipher suites: cipher suites;
Let message one: message = concat Aclient
Version, clientrandom, null, clientCipher su
T,{one, messageone};
c2(=two, message two_sumessage);
Let concatA [
sessionid_s:session_id,suites_s

CO;
Let concatB [

4¢3

¢ = (fourr, messageour s:message);

If messageour_s = Server hello done then
(*Client exchange™)

New pre Master secret:key;

New r2:seed;

Tsifive, messag efive};

(*Client Finished*)
co;

Let key to output (Master secret_c:key)=f [

Let verify data: Output =f [

Event client(verify data);
Telsix, verify data}.

Agreement_version:version,server_random:random,

c3 = (three, message three_s:message, signone_s:signature);
Tif check(message three s, signpkey, signone_s) then
Certify Version: Certificate Version,
name_s:subjectname,certify info: certificate

Let concatinfo{pkeyrsa s:rsapkey, name_algorithm:algorithmname)=certify _info in

Let messagefive:message = enc(key to clear text (pre Master secret), pkeyrsa_s, 12) in

Let c_s random_c:input = concat prf (clientrandom, server_random) in
Let hash message cthash input = cocat hash one(message one, message five) in

mastesecret,clientfinished,
hash{keyhash hashmessage_c})

ites in

=Smessage two s in
:chiper_suites

J =message three s in

premastersecret, mastersecret,

Jin

¢ s random c

Jm

Fig. 7: Client process

¢2 through the construct ¢2 (= two, message two_s:
Message). And then 1t the
agreement version in type version, server random in
type random, mn type session id and
cipher suites suites s in type cipher suites through the
A (Agreement version: Version,

gets version

sessiomd s
function concat
server random: random, sessiomid s Session id,
suites s: Cipher suites) by the construct let concat A
(Agreement version: Version, server random: Random,
Session id, suites s: Cipher suites)
message two _s in. Client process sends the message =

sessionid s: =
three, message three s: Message, sign one s: Signature
in the public channel ¢3 by the construct ******,

And then client process gets the digital signature
sign one s: Signature of message message three s:
message through the public channel ¢3 by the construct
¢3 = (= tlwee, message three s: message, signone s:
signature. Tt uses the function check () to verify the

607

digital
emessage three s
successful, then it gets

signatire of messag

If the verfication

signature signone s

message. 18
certificate version certify
version: Certificate version, server subject name name_s:
subject name and certificate certify _info: Certificate using
the construct let concat B (Certify version: Certificate
version, name_s: subject name, certify info: Certificate) =
message three s: in. Then it gets the public key
pkeyrsa_s: msapkey of the server and the algorithm
name algorithm: algorithm
certificatecertify info: Certificate using the construct let

name from

concatinfo (pkeyrsa s: rmsapkey, name algorithm:
algorithm name) = certify info.

After that client process receives the message
message our s message through the public channel c4
by the constructed (= four, message our_s: Message). If
the message message our s: Message 13 server hello

Done then it creates the pre master key pre master secret

Inform. Techrol. 1., 13 (4): 601-613, 2014

Let Server process =
c7 (=one, messageone c: message);

(*Session)

let id store: Session id=id in

if'id = null then

new session id: Session_id;
let id_store = Session id in

new server random: Random;

<8 {two, message two};

(*Server certificate®)

c(;

New narme: subjectnarne;

New subject algorithm: Algorithmnarmne;

new rl: Seed;

o9 {three, message three, signone;
(*Server hello done*)

¢

c10 four, server hello don)

e(;

cl1(={five, messagef ive_c: message);
[0

(*Server finished*)

¢12 (= six, verify data_fc: Output);

event server (verify data_fc);

Let concat A [clientﬁversion:version,clie'ntirandnm:ra.ndom,

id:session_idciphersuites:cipher suites

find 1<=N such that defined (sessionid [i] && (sessionid [I] =id) then

Tf client_version = Agreernent version then

Let message two: Message = concat A{Agreemnent version,server random, id _store, suites)i n

Let certificate info: Certificate = concat info (pkeyrsa,subject algorithm) in
Let message three: Message = concat B (certify, name, Certificate info) in

Let sign one: Signature = Sign (message three, signs key, r1) in

Let injbot (key to clear text (pre Master secret: Key)) = dec (message five c, skeyrsa) in

Let ¢ s random_s: Input = concatprf (client random, server random) in

Let key to out put (Master secret_s: Key) = f{pre Master_secret, maste secret,c_s_random_s) in

Let hash message fc: Hash input = cocat hash one (message one ¢, message five ¢) in

if £ (Master secret_s, client finished, hash (key hash, hash message_fc)) = verify data_fc then

TLet hash message: Hash input = cocat hash two (message two, message three, Server hello done) in

€13 | (seven, f (Master secret_s, server finished, hash (key hash, hash message)))

J = message one_c in

Fig. 8: Server process

in type using the construct new pre Master secret: kay
and uses the RSA encryption one() to encrypt it with
public key pkeyrsa s by the construct let message five:
secret),

Message = one (key toclear text (pre Master
pkeyrsa s, s2 and gets the message message five in type
message. Finally, it sends message message five by the
public channel ¢35 using the construct & (= three,
message three s: message, sign one_s: Signature}.

Client process uses the function concatprf() to
compute the hash input s random_c¢: Input of message

client random, server random by the construct let

¢ s random _c: Input concatprf (client random,
server random) in. And then it uses the function cocat
hash one () to calculate the hash input cocathashone of
message message one, message five by the construct let
hash message s: Hash input = cocat hash one (message

608

one, message five) in. Client process gets the master key
master secret ¢ Key and uses the PRF function () to
generate the master key master secret_keyc: Key by the
construct let key to output (message secret c: Key) =
f (pre master secret, master secret, ¢_s_random_c in. Also
ituse the PRF function () to compute by the construct let
verify data: Output = f(master secret ¢, client fimshed,
hash (key, hash, hash message ¢)). Finally, it executes the
event event client (verify data) and send it through the
public channel ¢6 by the construct ¢6 {six, verify data}.
Server process is modeled as server process in
Blanchet calculus n Fig. 8. Server process receives the
message one, message one c: Message from the public
channel ¢7 through the construct ¢7 (= one, message
one_c: Message). And then it uses the function concat A
to parse the message nessage one ¢ and gets client

Inform. Techrol. 1., 13 (4): 601-613, 2014

Version, client random
client random: Random, session 1d 1d: Session 1d and

cipher suite cipher suites: Cipher suites by the construct

versionclient version:

let concat A(client version: Version, client random:
random, id, cipher suites)-message one ¢ in Server
process checks id whether it defined and 1s equal to
sessionid or not by the construct find T<=N such that
defined (session 1d [1] && (session id [1] = 1d). If the result
is ok, then it stores id into id store: Session id using the
construct let 1d_store: Session 1d = id in. If 1s null, then
server process generates a new session id in type
sessionn_1d by the construct new session id: session id
and stores it into id_store by the construct let id store =
session id. At the same time if client version is equal to
agreement version, then it creates a random number server
random by the construct new server random: random and
use the function cancat A () to compute the message
message two: Message by the construct let message two:
message two: Message = concat A (Agreement version,
server random, 1d store, suites in. Server process sends
message message two by the public channel ¢8 through
the construct 8.

Server process generates the subject name name:
Subject name of certificate by the construct new name:
Subject name and the subject algorithm of certificate
subject algorithm: Algorithm name by the construct new
subject algorithm: Algorithm name. At the same time it
uses function concatinfo () to generate certificate
information certificate info: Certificate by the construct let
certificate info: Certificate = concatinfo (pkeyrsa, subject
algorithm in and uses the function concat B() to compute
the message message three: Message by the construct let
message three: Message concat B (certify name,
certificate info) in. And then it generates the digital
signature sign one: signatiwe of the message message
three: Message using the digital signature function sign
() by the construct let sign one: Signature = sign (message
three, signs key, r1) in. It also sends message three, sign
one through the public channel ¢9 by the construct
9 {three, message three, sign one} and sends four, server
Hello Done through the public channel ¢10 by the
construct cl0.

Server process receives the message message five c
Message from the public charmel ¢11 by the construct ¢11
(= five, message five ¢ message). Tt uses the RSA
decryption dec() to decrypt message five: Message and
gets the pre master key pre master secret: key by the
construct let mjbot (key to clear text (pre master secret:
key)) = dec (imessage five c, skeyrsa) in.

After that server process receives the messageverify
data_fc: Output from the public channel ¢12 with the
constructel 2 (= six, verify data fo: Output). It uses the
function concatprf to compute the ¢ s random_s by the

609

construct let ¢ s random s: input concatprf
(client random, server random) in and uses the PRF
function to calculate the master key master secret_s: key
by the construct let key to output (master secret s: key)
= f(pre master secret, master secret, ¢ s random_s)in. At
the same time it computes the hash input hash
message fc by the function cocat hash one() through the
construct let hash message fc: Hash pomt = cocat hash
one (message one_c, message five_c¢) in. If venfy data_fe
15 equal to output of the function f{master secret_s, client
fimshed, hash (key hashm hash message fc)), then it uses
the function cocat hash two () to compute the hash input
hash message: hash input by the construct let hash
messagel. hash input = cocat hash two (message two,
message three, server hello, done) in. Finally, it executes
the event event server (verify data fc) and sends the
message f(master secret s, server finished, hash(key
hash, hash message)) by the public channel ¢13 by the
construct €13 (seven, f(master secret_s, server finished,

hash (key hash, hash message))).

MECHANIZED VERIFICATION OF SECRECY AND
AUTHENTICATION IN TLS 1.2 HAND SHAKFE
PROTOCOL WITH CRYPTO VERIF

The inputs of Crypto verif have two formats. One is
channels Front-end. The other is oracles Front-end. In
both cases, the output of Crypto verif is same. The main
difference between the two inputs is that the oracle front-
end is based on oracles and the channel front-end is
based on charnnels.

In this study, channel Front-end is used as the input
of Crypto verif. Hence formal model of TLS 1.2 hand shake
protocol where Cipher suite 13 RSA encryption must
transform into the syntax of Crypto verif and generate the
Crypto verif inputs in the form of channels Front-end.

Here non-injective correspondences and injective
correspondences i Table 1 are used to model the
authentication from server to client. First non-injective
correspondences are used: event event server(x) ==>
client(x) authenticate client by server. And then Injective
correspondences are then used: event mj event
server(x)==>1y client(x) authenticate client by server.

From Fig. 9-11, the inputs of verification of
authentication and secrecy in Crypto verif are presented.
The analysis was

succeeded.

executed by Crypto verif and

Table 1: Correspondences in T1.S1.2 protocol

Correspondences

Event server(x)=—>client{x)
Tnj: Event server(x—= inj: Client (x)

Inform. Techrol. 1., 13 (4): 601-613, 2014

param N

Type version [large, fixed, bounded]
Type random [large, fixed, bounded]
Type seed [fixed]

Type rsakeyseed [large, fixed]

Type rsapkey [bounded]

Type rsaskey [bounded]

Type clear [textlarge, bounded]

Type ciphertext [large]

Type keyseed [large, fixed]

Type pkey [bounded]

Type skey [bounded]

Type signinput [fixed]

Type signatire [bounded]

Type hashkey [fixed]

Type hashinput [fixed]

Type hashoutput [bounded, fixed]

Type label [{ixed]

Type keytixed, [bounded]

Type session_id [large, fixed]

Type cipher suites [large, fixed, bounded]
Type CettificateVersion [large, bounded]
Type Certificate [large]

Type subjectname [large, fixed]

Type algorithmname [large, fixed]

Type Exchange algorithm [large, fixed]
Type pre Master secret [large, fixed, bounded]
Type message [large, fixed, bounded]
Type host [bounded]

Type input [large, bounded]

Type output [fixed, bounded]

Const Agreementversion: Version. (*protocol version*)
Const suites:cipher_suites.(*cryptographic suite®)
Const certify: certificate version.(*certifi cate verson*)
Const server hello done:message.(*Server hello done*)
Const mastesecret: Label.

Const server finished: Label.(*h:label"server finished"*)
Const client finished:label.(*h:1abel” client finished"*)
Const null:session id.(*session_id is null*)

Const one:host

Const twozhost

Const threethost

Const four:host

Const five:host

Const six:host

Const seven:host

Fun key to clear text (key): Clear text [compos]
Fun key to out put (key): Output [compos]

Fun concat A [Yersion, Random, . Message [compos]
Session_id, Cipher_suites

Fun concat B [Certificate version, . Message [compos]
subjectname, certificate

Fun concat info(rsapkey, algorithmname): Certificate [compos]
Fun concatprf [random, random]: Input [compos]

Fun cocat hash one (message, message): Hash input [compos]
Fun cocat hash two (message, message, message): Hash input
[compos]

Proba penc
Proba penceoll
Proba psign
Proba psig
ncoll

Proba phash
Proba pprf

Fig. 9: Inputs of TL.S1.2 protocol in cryp to verif

Param N1, N2, N3.
Fun f (key, label, input): Output.
Fun kgen (key seed): Key.

Else new r2: output; r2.

}

Psign, Psigncoll).

Query secret premastersecret.

Define PRF new (key seed, key, input, output, kgen, £, Pprf) {

Equiv N3 new r: key seed; new labelc: Label; N1 of (xiinput): =1 (kgen(r), labelc, x)
<=(N3 *Pprf (time+(N3-1*(time(kgen) + N1 *time (f, max length ())), N1, max length GO)Y=>
N3 new r: Key seed; N1 oftx:input): =
Find [unique] j<=N1 such that defined (x[j].r2[j]) and other uses(r2[j]) and x = x[j] then r2[j]

Expand IND_CCA2_public_key_enc (rsakey seed, rsapkey, rsaskey, cleartext, message,
Seed, rsaskgen, rsapkgen, enc,dec, injbot, Z,Penc,Penccoll).
Expand UF_CMA signahire (key seed, pkey, skey, message, signahire, seed, skgen, pkgen, sign, check,

FExpand collision resistant_hash¢hashkey, hashinput, input, hash,Phash).

Expand PRF new (key seed, key, input, out put, kgen, f,Pprf).

Event server (output). event client (output).

Query x:output; event server (x)=—>client(x).query x:output; inj:event server(x)=—=>inj:client(x).

Chaunel start, c, ¢1, ¢2, ¢3, ¢4, 5, ¢6, ¢7, ¢8, ¢9, ¢10, c11, ¢12, ¢13

Fig. 10: Continue

Inform. Techrol. 1., 13 (4): 601-613, 2014

Llet Client process=
in(c, O);
(*Client Hello*)
New client version: Version; new client random: Random;, new client cipher suites: Cipher_suites;
Let message one: Message = concat A (client version, client random, null, client cipher suites) in
Out (c1, (one, message one));

Tn{c2, (= two, message two_s: Message));
Let concat A (Agreement_version: Version, server random: Random,

Session id s: Session_id, suites s: Cipher suites) = message two s in
Out(c, ();
In (c3, (=three, messagethree s:message, signone s:signatire));
Tf check{messagethree s, signpkey, signone s) then
Let concat B (Certify version: Certificate version,

Name_s: Subject namne, certify_info: Certificate) = message three_s in
let concat info(pkeyrsa_s: Rsapkey, name_algorithm: Algorithmname) = certify_info in
outic, O);
In(c4, (=four, message our_s: Message)),
If message our_s = server hello done then

(Client exchange)
New premaster secret:key; new r2: seed;
Let message five: message = enc (key to clear text (prem
[fixed [fixed*
[fixed[fixed astersecret), pkeyrsa_s, 12) in
out{c5, (five, message five));

(Client finished)
in(c, 0);
Let ¢_s_random_c: Input = concat prf (client random, server_random) in
Let hash message c: Hash input = cocat hash one (message
[fixed[fixed* *
[fixed[fixed geone, message five) in
Let key to output (masters ecret_c: Key) =f (pre master secret, maste secret, ¢ s random _c) in
Let verify data: Output = f{maste rsecret_c, client finished, hash (key hash, hash message c)) in
Event client (verify data);
out{c®, (six, verify data)).

Fig. 10: Inputs of TLS1.2 protocol in cryp to verif

Let server process=
—in{c7, (one, message one_c:message));
Let concat A (client. version: Version, client random: Random, id: 8ession id,
Cipher suites: Cipher suites) = message one c in
(* Sessionld *)
Find i<=N suchthat defined (session id[i]) && (session id[i] = id) then let id_store: Session_id = id in if id = null then
New sessionid:session_id;
Let id store = session id in if client version=Agreement version then new server random: Random;
Let message two: Message = concat A (Agreement version, server random, id store, suites) in out (¢8, (two, message bwo));
(* Server certificate *)
Tn{c, ()); new name: Subject name; new subject algorithm: Algorithmname;
Let Certificate info: Certificate = concatinfo (pkeyrsa, Agreement version) in
Let message three: Message = concatB{certify, name, Certificateinfo) in new rl:seed;
Let signone: Signature = sign (message three, signskey, rl) in out{c9, (three, message three, signone));
(* Server hello done *)
Inde, O);
Out(c10, (four, server hello done));
In€cll, (= five, message five_c:message));
Let injbot (key to clear text (pre Master_secret:key)) = dec (messagefive_c, skeyrsa) in out(c, (),
(* Server finished *)
Tn{c12, (= six, verifydata fc:output));
Tet ¢ s random_s: Input = concatprf{client._random, server random) in
Let key to output (Master secret_s: Key) = fipre Master secret, mastesecret, ¢ s random_s) in

Fig. 11: Continue

611

Inform. Techrol. 1, 13 (4): 601-613, 2014

Let hash message_fc: Hash input = cocat hash one (message one_c, message five_c) in
if f{mastersecret_s, clientfinished, hash(keyhash, hash message fc)) = verifydata_fc then
let hash message:hash input = cocathash two(message two, message three, server hello done) in event server (verify data_fc);
out(cl3, (seven, f(maste rsecret_s, server finished, hash (key hash, hash message)))).
process

In(start,));

New seedonersakey seed;

Let pkevrsa: Rsapkey = rsapkgen (seed one) in

Let skeyrsa: Rsaskey = rsaskgen (seed one) in new seedtwo:key seed;

Let signpkey: Pkey = pkgen (seed two) in

Let signskey : Skey = skgen (seed two) in new keyhash:hashkey,;

Out(c, (pkeyrsa, signpkey, keyhash));

((!N Client process)|(!N Server process))

Fig. 11: Inputs of TL.S1.2 protocol in crypto verif

wEystendiond, see

2] C=nme TR ETAYBNNE _CX MEETAYR I}

vel puent sepperixd == clisnt{x)

px ignmuntz of kindew =i

AESULT

Fig. 13: Secrecy of TL.S 1.2 protocol in crypto verif

The results show in Fig. 12 and 13. TLS 1.2 protocol guarantee authentication from server to client and the
where Cipher Suite is RSA encryption is proved to secrecy of pre master key in computation model.

612

Inform. Techrol. 1., 13 (4): 601-613, 2014

CONCLUSION

During the past several years TLS protocol bas been
inplemented and deployed widely in many web-based
applications. According to the related references, until
now it is not found that security analysis of TLS 1.2
protocol where Cipher suite 13 RSA encryption with
mechanized tool in computational model. Hence, m this
study, Blanchet calculus in computational model is
used to analyze TLS 1.2 protocol where Cipher suite is
RSA encryption with mechanized tool. The result shows
that it has confidentiality of pre master key and
authentication from server to client. The first mechanized
verification on TLS 1.2 protocol where Cipher suite is RSA
encryption in computational model of in active adversary
1s executed.

In the near future the verification of the
implementation of TLS 1.2 protocol in computational
model 1s very interesting.

Tava

ACKNOWLEDGMENT

This study was supported in part by Natural Science
Foundation of The state Ethnic Affairs Commission of
PRC under the Grants No: 12ZNZ 008, titled “Automatic
Verification of Cryptographic Security in Security Protocol
Java Code”, conducted in Wuharn, China from 1/1/2013 to
30/12/2013.

REFERENCES

Bhargavan, K., C. Fournet, R. Corin and E. Zalinescu,
2012, Verified cryptographic implementations for
TLS. ACM Trens. Inform. Syst. Secur.,
Vol. 15.10.1145/2133375.2133378

Blanchet, B., 2008. A computationally sound mechanized
prover for security protocols. TEEE Trans.
Dependable Secure Comput., 5: 193-207.

Chaki, S. and A. Datta, 2009. ASPIER: An automated
framework for verifying security protocol
implementations. Proceedings of the 22nd TEEE
Computer Secwrity Foundations Symposium,
July 8-10, 2009, Port Jefferson, New York,
pp: 172-185.

613

Fournet, C., K. Bhargavan, M. Kohlweiss, A. Pironti and
P.Y. Strub, 2013. An implementation of TL.S 1.2 with
verified cryptographic security. Proceedings of the
2nd International Conference on Principles of
Security and Trust, March 16-24, 2013, Rome, Ttaly,
pp: 17-17.

Jager, T., F. Kohlar, S. Schage and I. Schwenk, 2012. On
the security of TLS-DHE in the standard model.
Proceedings of the 32nd Annual Cryptology
Conference on Advances in Cryptology, August
19-23, 2012, Santa Barbara, CA., USA., pp 273-263.

Jonssory, J. and B.S. Ir. Kaliski, 2002. On the security of
RSA encryption in TLS. Proceedings of the 22nd
Annual International Cryptology Conference on
Advances n Cryptology, August 18-22, 2002,
Santa Barbara, CA., USA ., pp: 127-142.

Meng, B., 2011. A swvey on analysis of selected
cryptographic primitives and security protocols in
symbolic model and computational model. Inform.
Technol. 1., 10: 1068-1091.

Morrissey, P., N.P. Smart and B. Warinschi, 2008. A
modular security analysis of the TLS hand shake
protocol. Proceedings of the 14th International
Conference on the Theory and Application of
Cryptology and Information Security, December 7-11,
2008, Melbourne, Australia, pp: 55-76.

Ogata, K. and K. Futatsugi, 2005. Equational approach to
formal analysis of TLS. Proceedings of the 25th IEEE
International Conference on Distributed Computing
Systems, June 10, 2005, Columbus, OH., USA.,
pp: 795-804.

Paterson, K.G., T. Ristenpart and T. Shrimpton, 2011. Tag
size does matter: Attacks and proofs for the TLS
record protocol. Proceedings of the 17th International
Conference on the Theory and Application of
Cryptology and Information Security, December 4-8,
2011, Seoul, South Korea, pp: 372-389.

Paulson, 1.C., 1999. Inductive analysis of the internet
protocol TLS. ACM Trans. Inform. Syst. Secur.,
2: 332-351.

Wagner, D. and B. Schneier, 1996. Analysis of the SSL 3.0
protocol. Proceedings of the 2nd USENTX Workshop
on Electronic Commerce, November 18-21, 1996,
Oakland, Califorma, pp: 29-40.

	ITJ.pdf
	Page 1

