Evaluation of Different Herbicide Application Methods and Cultivation Effect on Yield and Weed Control of Corn (Zea mays)

A.R. Niazmand, M. Shaker and A.R. Zakerin
Department of Plant Pathology, Branch of Jahrom, Islamic Azad University, Fars, Iran
Department of Agri-Machinery, Agricultural Research Center of Fars, Zarghan, Fars, Iran
Department of Agronomy, Branch of Jahrom, Islamic Azad University, Fars, Iran

Abstract: To evaluate a new method of weed control in Corn (Zea mays) fields of Fars province of Iran and integrating in row cultivation and band spraying of Atrazine in fields of this region and their effects on yield and weed control during 2004 and 2005 crop season a new sprayer with band and broadcast spraying ability was designed and used in corn fields. Results of the first year showed band and broadcast spraying alone or combined with cultivator application in any plant heights increased yield and gave adequate weed control. In rows cultivator applications in any plant heights had not any effect on yield increasing and weed control alone. The second year results showed increasing of yield by using cultivator, but timing of cultivation had not any effect on yield. Band and broadcast spraying combined with cultivation and timing of cultivation gave similar maize yield. These results allow us to extrapolate the band application and mechanical weeding practice in the farm management of corn in Fars province.

Key words: Band sprayer, band application, broadcast application, Atrazine, post-emergence

INTRODUCTION

Corn is the most productive cereal in the world and known as the queen of cereal (Emam, 1995). In Iran, Fars is one of the important provinces of corn production with 653361.65 tons yield per year and occupied second place production among all provinces in the 2005 (FAO, 2005). In this province the usual method of weed control is post planting and broadcast application of Atrazine in the whole field.

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine), which is used to control annual broadleaf and grass weeds in corn (Zea mays), sorghum (Sorghum species), sugarcane (Saccharum officinarum) and other crops, is among the most widely used herbicides in the US (NASS, 1995).

The application method of Atrazine is pre and post planting in many world corn fields and there are two forms of application (band and broadcast) (Meister, 1992).

Vast of Atrazine has created many problems for environment and agriculture such as entering to under ground water resources and deep well or moving to far places by rain water or flooding (Babut et al., 1996; Adamski and Pugh, 1996; Heydel, 1998; Lowery et al., 1998; Kalkhoff et al., 2003).

Atrazine absorbed into soil particles at the absorption zone (approximately 1.5 cm under top soil). Residual Atrazine restricts what subsequent crops can be planted. In some situations, Atrazine is applied immediately after wheat harvest. This should control volunteer wheat and other weeds that germinate after wheat harvest (Thompson et al., 1998).

Because of these problems many researchers suggest to reduce Atrazine doses by integrating Atrazine band spraying method and cultivator (Mulder and Doll, 1993; Buhler, 1998; Clay et al., 1998; Donald et al., 2001; Swanton et al., 2002).

Reduced dose depends on spacing between rows and width of spraying Daniel et al. (1992) found that the most economic and effective control method used 15.0 cm band width plus two times hoeing, Forella et al. (1992) and Teasdale (1995) found that weed control from reduced herbicide doses in corn was increased in narrow-row compared to wide-row environments.

Using cultivator between planted rows not only can control annual monocot and dicot weeds also improve better aeration and structural of some soils such as clay soils. The in-row subsoiler is a common implement used in wide-row crop production systems (76.0 cm and wider) to reduce soil compaction (Laflen et al., 2000). This implement loosen an area approximately 8.0 cm wide and 40.0 cm deep directly under the row. For narrow-row systems (such as wheat), bent legged subsoilers (paratill and similar implements) spaced close together to disrupt
most of the surface horizon are gaining wider acceptance by growers for crops grown in narrow-row culture (Lafren et al., 2000). Yield increases due to sub soiling are attributed to these implements disrupting the hardpan so that roots have a greater volume of soil from which to extract water (Busscher et al., 1998).

Minimizing environmental impact, increasing economic returns and employing non-chemical methods without sacrificing yield are the aim of integrated weed management (Buhler et al., 1992; Rosales-Robles et al., 1999). It does not mean totally replacing herbicides with other methods (Shaw, 1982). Banded application is as effective as overall when followed by timely inter-row cultivation (Mulder and Doll, 1993; Buhler, 1998; Donald et al., 2001; Swanton et al., 2002) and the amount of herbicide required can be reduced up to 84% without sacrificing crop yield (Swanton and Weise, 1991; Edie et al., 1992; Sankula et al., 2001). In addition, banded application can reduce herbicide application costs (Manson, 1983; Parish et al., 1995) and environmental impact (Shock et al., 1998; Heydel et al., 1999; Prueger et al., 1999; Hansen et al., 2000; Gorneau et al., 2001). The purposes of this research are (i) designing a tractor band sprayer to reduce use of Atrazine dose, (ii) integrating of band spraying with cultivator to investigate their effects to control weed and yield production of corn and (iii) comparing of this new method with the common method of weed control (using broadcast application) in corn fields of Fars province.

MATERIALS AND METHODS

This research was carried out to design a new band sprayer in 2004. A new boom with an angle iron of 3 m length and 5 cm width was designed and 6 holes and 5 slits with 75 cm apart from center of each other of holes and slits was drilled into it (Fig. 1b, c). The nozzle holder was an angle iron 5×5 cm and it was supported by a piece of iron pipe and a scroll (Fig. 1c). An iron pipe with 1.25 cm radial and 40 cm length was connected to each nozzle holder and at the two end sides of each pipe a T jet nozzle (8003) and a flexible hose was placed respectively (with opening and closing valve) (Fig. 1d). By using the referred pipe nozzles could adjust vertically and horizontally. If the nozzles holder adjusts with 50 cm apart of each other, it could spray broadcast spraying on whole field and if they adjust with 75 cm apart and remaining nozzles valves are closed band spraying could apply in rows with 75 cm spacing. The vertical position of each nozzle is adjustable too.

The other parts of this device including frame, plastic tank (400 L), pump, regulator and pressure meter gauge were as same as common field sprayer (Fig. 1a-h).

The primary test of this new sprayer was done in the Agricultural Research Center of Fars. Half of the plastic tank capacity was filled up with water and by adjusting the nozzles vertically and horizontally the two methods of spraying (band and broadcast) were successfully tested.

The function of this sprayer was evaluated and compared to common tractor sprayer in order to control of weed corn. Then a corn field was selected in the Dush Vahdat of Firuzabad in Fars province. During 2004 and 2005 crop season, corn (704 Mohgan cultivar) was planted in the 3000 and 5500 square meter field area respectively by using pneumatic seed planter with rate of 25 kg ha⁻¹ seeds. The rate of used fertilizers were 300 kg ha⁻¹ urea, phosphate 200 kg ha⁻¹, potassium phosphate 100 kg ha⁻¹ and ferrie and zinc sulphate 50 kg ha⁻¹.

The experimental design was Randomized Complete Block with 3 replications. Every Block included 4 planted rows (80 m length at the first year and 100 m at second year) with 75 cm spacing between the rows for each treatment. Irrigation was provided with the interval 6 days. Atrazine (Gezpriime w.p. 80%) at 1.5 kg ha⁻¹, a post-emergence (POST) herbicide was applied with a tractor-mounted designed sprayer. Sweeps 4 rows cultivator was used in this research.

The treatments were:

- Non-spraying and non-cultivating application (control treatment)
- Cultivator application at 10 cm heights of corn plants
- Cultivator application at 25 cm heights of corn plants
- Cultivator application at 10 and 25 cm heights of corn plants
- Broadcast spraying with 50 cm apart of nozzles on boom
- Broadcast spraying with 50 cm apart of nozzles on boom and then cultivator application at 10 cm heights of corn plants
- Broadcast spraying with 50 cm apart of nozzles on boom and then cultivator application at 25 cm heights of corn plants
- Broadcast spraying with 50 cm apart of nozzles on boom and then cultivator application at 10 cm heights of corn plants
- Band spraying with 75 cm apart of nozzles on boom
- Band spraying with 75 cm apart of nozzles on boom and then cultivator application at 10 cm heights of corn plants
- Band spraying with 75 cm apart of nozzles on boom and then cultivator application at 25 cm heights of corn plants
- Band spraying with 75 cm apart of nozzles on boom and then cultivator application at 10 and 25 cm heights of corn plants
Fig. 1: Different parts of designed sprayer, (a) image of all parts of designed sprayer, (b) partial part of new designed boom, (c) angle iron with slit and hole (1), nozzle holder with scroll (2), iron pipe and valve (3), (d) flexible hose connected to valve (4), (e) image of pump (1), out coming hose and divisive hoses (2), (f) incoming and out coming hoses to pump, (g) pressure meter gauge (1), valve of pressure gauge (2), incoming hose of liquid from pump to pressure gauge (3) and two main divisive hoses to boom and their valves (4) (b). Two main hoses from pressure gauge (1) and six divided hoses to boom (2).
Table 1: Details of field applications during experiments

<table>
<thead>
<tr>
<th>Applications</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sowing area</td>
<td>3000 m²</td>
<td>5500 m²</td>
</tr>
<tr>
<td>Corn cultivar</td>
<td>704 Moghan</td>
<td>704 Moghan</td>
</tr>
<tr>
<td>Rate of used seed</td>
<td>25 kg ha⁻¹</td>
<td>25 kg ha⁻¹</td>
</tr>
<tr>
<td>Rate of used fertilizers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>300 kg ha⁻¹</td>
<td>300 kg ha⁻¹</td>
</tr>
<tr>
<td>Phosphate</td>
<td>200 kg ha⁻¹</td>
<td>200 kg ha⁻¹</td>
</tr>
<tr>
<td>Potassium phosphate</td>
<td>100 kg ha⁻¹</td>
<td>100 kg ha⁻¹</td>
</tr>
<tr>
<td>Zinc sulphate</td>
<td>50 kg ha⁻¹</td>
<td>50 kg ha⁻¹</td>
</tr>
<tr>
<td>Irrigation interval</td>
<td>6 days</td>
<td>6 days</td>
</tr>
<tr>
<td>Rate of used Atrazine</td>
<td>1.5 kg ha⁻¹</td>
<td>1.5 kg ha⁻¹</td>
</tr>
<tr>
<td>Cultivation timing</td>
<td>10, 25 cm plant heights</td>
<td>10, 25 cm plant heights</td>
</tr>
<tr>
<td>Kind of cultivator</td>
<td>Sweeps 4 rows</td>
<td>Sweeps 4 rows</td>
</tr>
<tr>
<td>Nozzle spacing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadcast spraying</td>
<td>50 cm</td>
<td>50 cm</td>
</tr>
<tr>
<td>Band spraying</td>
<td>75 cm</td>
<td>75 cm</td>
</tr>
<tr>
<td>Type of nozzles</td>
<td>T jet 8003</td>
<td>T jet 8003</td>
</tr>
<tr>
<td>Weed density</td>
<td>Pre and post spraying</td>
<td>-----</td>
</tr>
<tr>
<td>Measuring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvesting date</td>
<td>October</td>
<td>October</td>
</tr>
</tbody>
</table>

The identification of weed species was done before spraying and the density of weed species was recorded by using a metal quadrant (1 x 1 m) in each treatment. Then, the density of weed species were identified 3 weeks after exertion of each treatment as the same as previous method (metal quadrant).

Yield corn was harvested by combine in the end of October 2004 and 2005 and the seed production of each treatment was weighted. Details of field applications are in Table 1.

The results were analyzed by MSTAT-C and SAS programs and the means was analyzed with Duncan test at 5% level probability.

RESULTS AND DISCUSSION

Results of two years of plot experiments on the research fields showed Chenopodium album, Convolvulus arvensis, Portulaca oleracea, Phalaris minor and Physalis sp. were the prevalent weed species. Results of first year experiment showed that there were not any significantly differences of yield between control treatment and in row cultivator application treatments in different heights of corn (Table 2).

This result showed that in rows cultivator application had not any effect on yield increasing alone. Also from the 5 to 12th treatments were in the same statically groups and they showed significantly differences compare to control treatment but no significant differences were observed between those treatments. This means that band and broad cast spraying alone or combined with cultivator application in any plant heights could be profitable and can increase yield. Eadie et al. (1992) reported that band application of herbicide in conjunction with one or two cultivations gave similar weed control and maize yield compared with overall application of herbicides and a 60% reduction in total herbicide application was achieved. Donald et al. (2001) and Swanton et al. (2002) showed that band application followed by cultivation gave similar weed control, maize and soybean yield and gross return compared to broadcast application of herbicides. Mullaeva and Stoltenberg (1997) found that band application plus inter-row cultivation was as effective as broadcast applications in reducing plant population and seed bank of dominant species.

Hence, there was no significantly a difference between 9th treatment and the other treatments that used spraying combined with or without cultivator application in any plant heights could get result that the best method of spraying is band spraying. This means that it is possible to reduce herbicide application and keep yield still or increase it, this aspect is in accord with the proposal put forward by Kinsel et al. (1995) and Donald (2007). The early results are confirmed by our work that band application with cultivator is a useful method in IWM.

The obtained results in the first year proved that there were significantly differences of weed control between control treatment and the other treatments (Table 3). It means that exertion at any treatments could effect on weed control. By analyzing the results achieved by using cultivator for weed control, it is clearly visible that there were not significantly differences between cultivator application in 10 and 25 cm plant height, but twice cultivator application could increase weed control than once cultivator application in 25 cm plant height.

Experimental results showed that band and broad cast spraying had the same effect on weed control so the band spraying is better than broad cast spraying because it reduced herbicide application quantity these results previously were reported by Bicki et al. (1991) too. Earlier studies had shown that a 50-84% reduction of herbicide doses was possible using band application plus inter-row tillage without scarifying weed control and crop yield (Krausz et al., 1995; Donald et al., 2001; Swanton and Weise, 1991; Eadie et al., 1992; Sankula et al., 2001; Mulder and Doll, 1993).

In the second year of experiment only yield was analyzed, because at the first year no differences were observed among treatments 5th to 12th in weed control. There were no any differences between treatments 2, 3 and 4 (Table 2). It means that cultivator application could increase yield but timing of cultivator application had not any effect on increasing yield.
Table 2: Corn yield in each experimental plots during two years experiment according to treatment No. (kg/plot)*

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>120c</td>
<td>205.5c</td>
<td>197b</td>
<td>211bc</td>
<td>545a</td>
<td>258.5ab</td>
<td>253ab</td>
<td>260.7ab</td>
<td>258ab</td>
<td>257.5ab</td>
<td>252ab</td>
<td>257ab</td>
</tr>
<tr>
<td>2005</td>
<td>84a</td>
<td>188.0d</td>
<td>192d</td>
<td>221d</td>
<td>501c</td>
<td>590.6b</td>
<td>660b</td>
<td>666.5a</td>
<td>668a</td>
<td>670.0a</td>
<td>671a</td>
<td>6888a</td>
</tr>
</tbody>
</table>

*Means followed by the same letter do not differ (p = 0.05), according to Duncan test

Table 3: Weed control percent according to treatment No. in each experimental plots*

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>6d</td>
<td>58bc</td>
<td>52bc</td>
<td>64.6b</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
</tr>
<tr>
<td>2005</td>
<td>6d</td>
<td>58bc</td>
<td>52bc</td>
<td>64.6b</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
<td>100a</td>
</tr>
</tbody>
</table>

*Means followed by the same letter do not differ (p = 0.05), according to Duncan test

There were significantly differences in yield among treatments 5 and 6; it was obvious if cultivator application has followed band spraying the yield could increase significantly these results agree with those of Pleasant et al. (1994), who reported the efficiency of combining cultivation with banded herbicides to control weeds in corn.

The most productive treatments were treatments 7 to 12 which they were in the same statistically groups. On the basis of these results it was obvious when cultivator combined with herbicide spraying, could increase yield rather than using these activities all alone, the same results were obtained by Heydel et al. (1999).

Also, there were not any significant differences between band and broadcast spraying combined with using any cultivation and timing of cultivation. Also use of cultivator combined with spraying had not any effects on increasing of yield, these results agree with Bicki et al. (1991), that reported corn and soybean yields, averaged over 3 years, were not significantly different for band applications with one or two cultivations or for a cultivation plus broadcast post emergence herbicide application when compared with broadcast pre emergence applications. It is also reported that cultivations with broadcast application of herbicides does not improve yield although weed control increases slightly (Mulder and Doll, 1993).

The significant differences among treatments 5 and 9 had proved two important points, at first with using two methods of spraying could get more crop production rather than cultivator application and at second by using broadcast method could result more yield than band spraying.

CONCLUSION

It is quite evident from the results in two years of experiment that climatic condition, planting and harvesting and other agricultural conditions could affect on results. In all band spraying is more beneficial for environment and farmer economic and it would thus be sustainable. The combination of banded herbicides with mechanical weeding was as effective in controlling weeds as a broadcast application of herbicide. The banded herbicide controlled in-row weeds whereas mechanical weeding removed weeds between the rows. This integrated approach reduced herbicide use by 73% and provided adequate weed control and crop yields. Such a method is very attractive because it may give the highest economic returns. However, labor avail ability for timely mechanical weeding may still limit the effectiveness and acceptance of this practice by farmers. These results allow us to extrapolate the band application and mechanical weeding practice in the farm management of corn in Fars province.

REFERENCES

Eman, Y., 1995. Physiology of Tropical Crop Production. Shiraz University Publisher, Iran, pp: 305.

