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ABSTRACT

Pairwise testing strategies are used to select test cases from a large search space considering the
interactions of test input parameters in order to minimize the test suite size. We normally want that
all 2-way interactions of parameters’ values occur in the test suit at least once. Due to the large and
complex search space in the interaction problems, different techniques have been used to deal with
this search space. Artificial intelligent techniques have been regarded as being especially adequate
search strategies, since they are able to deal with search for optimization. Two of the well known
algorithms are Genetic Algorithm (GA) and Ant Colony Algorithm (ACA). However, other heuristic
search techniques have started to compete with GA and ACA such as Particle Swarm Optimization
{(PS0) 1in the context of algorithm simplicity and performance. This study presents the development,
of a new pairwise test data generation strategy based on PSO, called Pairwise Particle Swarm-
based Test Generator (FPSTG). In deing so, this study also highlights PPSTG design as well as
compares its performance in terms of test size against other existing strategies. PPST G serves as
our research vehicle to investigate the effectiveness of PSO for pairwise test data generation. The
experimental results and comparisons of our strategy showed that our strategy can generate
comparable results as far as the size of the test suite is concerned.

Key words: Software testing, interaction testing, combinatorial testing, test design techniques,
testing processes, artificial intelligence, meta-heuristics

INTRODUCTION

Although desirable as an activity to ensure quality and conformance, complete and exhaustive
software testing is practically impossible (Nie and Leung, 2011; Reongruangsuwan and Daengde;j,
2010). As a result, many sampling strategies have been proposed in the literature including
equivalent partitioning, boundary value and cause and effect analysis. Using these strategies, test
data can be sampled accordingly to manimize the test data for consideration and hence reduce
testing efforts and cost. Although useful, the effectiveness of these strategies can sometimes be
questionable especially in the case where there are significant interactions between system
variables. Often, these (traditional) sampling strategies are sufficiently lacking for detecting bugs
due to interaction.

Mathematically, the representation of the interaction test suites took different forms. Several
objects have been defined with the effective properties of the covering array. The notation CA
(IN;t,k,v) represent an Nxk array on v values such that every Nxt sub-array contains all ordered
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subsets from v values of size t = 2 at least one time (Hartman and Raskin, 2004). When the number
of parameter values are varied, Mixed Covering Array MCA (IN;t k,(v1,v2,... v,) notation can be
adopted (Colbourn ef al., 2008). Both CA and MCA notation can further be simplified as CA (N:t,v5)
or MCA (Nit, vi.v®) (Yilmaz et al., 2004). By using the covering array notation in the software
testing, each test suite is a construction of Nxk array where N is the number of test cases. As a
result, each test case represents a single setting of the system under test. In pairwise interaction
testing, we normally want that all pair combinations of parameter values occur in the test suite at
least once (Klaib ¢t al., 2008; Kuhn and Reilly, 2002; Kuhn et al., 2004).

To address the construction of the interaction test suites, significant efforts in the literature are
now being focused on pairwise testing strategies (Bryce and Colbourn, 2007; Czerwonka, 2006;
Klaib et al., 2010, 2008). Pairwise testing strategies aim is to construct the pairwise interaction test
suites by searching for more interactions coverage to optimize the size of the test suites. Due to the
complexity of search space, different techniques have been used to deal with this search space for
generating pairwise test cases. Searching for an optimum set of pairwise test cases can be a
painstakingly difficult endeavor. Therefore, different pairwise strategies have been proposed to
construct near optimal sets of test data. There are two main approaches for constructing pairwise
test suite: the algebraic and computational approach (Lei ef al., 2007; Lei and Tai, 1998),

Algebraic approach, in some cases, can produce the most optimal test suite. The approach often
based on the extensions of the mathematical functions for constructing the Orthogonal Array (OA)
{Cheng, 1980). Orthogonal arrays are often too restrictive since it requires the parameters and
values to be uniform. However, in general, computations involved in algebraic approaches are
lightweight (Lei et al., 2008). Nonetheless, algebraic approaches often impose restrictions on the
system configurations to which they can be applied.

In contrast to algebraic approach, computational approach often relies on the generation of all
pair interaction possibilities then checking the coverage of each proposed test case with the
generated pair interactions. In such a checking process, there is significant searching efforts
required in the combinatorial space in order to generate the required test suite until all pair
interactions have been covered. There are two efforts for constructing test cases in this approach:
one-test-at-a-time or one-parameter-at-a-time. In case of one-test-at-a-time, the algorithm
generates one test case and checks its coverage with the pair interactions. Automatic Efficient Test
Generator (AKTG) (Cohen ef al., 1997) and its variant (mAKTG) (Cohen ef al., 2007), are well-
known examples in this approach. In contrast, strategies with one-parameter-at-a-time fashion
construct the test case by adding one parameter at a time and check for its coverage with the pair
interactions. In Parameter Order (IPO) (Lei and Tai, 1998) is a well-known example in this
approach,

More recently, there have been a number of attempts to use Artificial Intelligence (Al) based
strategies for pairwise testing as a variant of computational approach since they are able to
optimize the search process. One reason for adopting artificial intelligence based strategies 1s to
ensure near optimal sclution for every configuration. Two of the most common implemented
artificial intelligence based strategies are based on Genetic Algorithm (GA) (Shiba ef al., 2004) and
Ant Colony Algorithm (ACA) (Shiba et al., 2004). Despite giving good results (Shiba et al., 2004)
both strategies appear to suffer from heavyweight computational process rendering difficulties to
support high order parameters and values. For this, the search for other lightweight artificial

intelligence strategies 1s an essential demand.
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However, other heuristic search techniques have started to compete with GA and ACA such as
Particle Swarm Optimization (PSO). Similar to its other Al counter parts, PSO has proven its
suceess in many research areas but with lighter computation mainly due to its algorithmic simplhicity
{Clerc and Kennedy, 2002; Jie et al., 2008; Liang et al., 2006; Wachowiak et al., 2004). Concerning
its application in software testing, the advantages of PSSO over GA have been demonstrated by
Windisch et al. (2007) for structural testing. This raises the question of how PSO compares against
other artificial intelligent based pairwise strategies, especially GA and ACA.

To address the aforementioned comparison, we present a new test generation strategy for
pairwise combinatorial testing based on Particle Swarm Optimization, called Pairwise Particle
Swarm Test Generator (FPSTG). PPSTG serves as our research vehicle to investigate the
effectiveness of PSO for pairwise test data generation.

EXISTING ARTIFICIAL INTELLIGENT BASED PAIRWISE STRATEGIES

Genetic algorithm based strategies: Existing Genetic Algorithm (GA) (Shiba et al., 2004) base
strategy 1s based on ARTG strategy (Cohen ef al., 1997). In GA, every possible solution (test case
here) is treated as a chromosome, a number (m) of test cases candidate (chromosomes) is generated
randomly. These candidates pass through an evaluation loop and uniform crossover exchanges
processes between each two chromosomes and then the best number of chromosomes will be selected
from the candidates’ pool. The fitness function is used to estimate the goodness of a candidate
solution. The fitness function for a test case has been defined as the number of new interaction
elements that can cover. An imtial random population is generated and then the GA goes to the
evaluation loop. Figure 1 shows the outline of the GA algorithm.

Ant colony based strategy (ACA): ACA algorithm was motivated by the actions of natural ant
colonies 1n selecting the best path between their colony and food location (Shiba ef al., 2004). The
strategy minimizes test suite size by combining test cases with an interaction coverage guarantee,
Fundamentally, the ACA algorithm’s procedure is based on the following generalizations:

Input: A test set;
Output: A test case;
Begin
Create the initial population P of candidates.
Evaluate P.
While (stopping condition is not met) {
Belect Elite congisting of O best individuals from P
Apply selection to individuals in P to create Py aumg,
consisting of (m- O) individuals.
Crossover and Mutate P,
Copy the all individuals of P, to P
Replace the worst (m- O) individuals in P
Evaluate P
If (stagnation condition is met) Mutate P massively
}
Return the best test case found
End

Fig. 1. AETG-GA test generation algorithm (Shiba ef al., 2004)
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* HKach possible path from the start to end node is assigned to be a solution candidate

*+  When arriving at the end node, the quality of the current path is evaluated by measuring total
quality of pheromone which is placed by the ant at every node in the current path

* A decision among different edges is taken based on a larger amount of pheromone which will
be the shortest or optimum path to the target

Figure 2 represents the search space in ACA strategy. Each node represents one parameter and
the arrow represents the possible values. The first parameter f, has three values {V,,, V,,, V,;} and
the second parameter f, also has three values {V,, , V,,, V,.} while the third parameter f; has two
values {V,, , V., } and so on, until reaching the last parameter f, that has two values {V_, , V ., }.

Candidates’ test cases are generated by crawling through the above shown representation. All
the ants start from node f;. Each ant moves to the next node by probabilistically selection one value
based on the amount of pheromone and heuristic value to guide the ants to each possible branch.
When all the ants reach the end point, the candidate’s solutions will be evaluated. Then the
pheromone will be updated on each edge in the paths during the return back process to the starting
node. The process will be repeated, where at every cycle, an extra pheromone will be dropped on
each edge. Then the best candidates will be chosen. Figure 3 depicts the outline of the ACA
algorithm.,

Vil V21 V31 Vnl

Fig. 2: ACA search space (Shiba et al., 2004)

Input: A test set;
Output: A test case;
Begin
Compute local heuristic
Initialize pheromone
While (stopping conditions is not met) {
For (each ant k) {
Generate a candidate test case S,
Evaluate S,
Lay pheromone
1
Update pheromone
If (stagnation condition is met)
Initialize pheromone
}
Return the best test case found
End.

Fig. 3: AETG-ACA test generation algorithm (Shiba et al., 2004)
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PSO and PPSTG strategy: PSO 1s a population-based swarm intelligence algorithm introduced
by Eberhart and Kennedy (1995) and Kennedy and Eberhart (1995). As a popular optimization
method, PSO has been used during the last years since it showed a number of advantages in
comparison to other optimization methods. Some of the key advantages are (Sutha and
Kamaraj, 2008; Windisch et al., 2007):

+  PSO has few parameters to regulate and can be easily merged with the environment that needs
optimization

«  PS0Ois less sensitive to the nature of the objective function

« PS5O does not need the calculation of derivatives that the knowledge of good solutions is kept
by all particles and that particle share the information with others in the swarm

Particle swarm optimization tries to manipulate a certain number of candidate solutions at once
(Pant et al., 2008). The whole population is called swarm and the solution is called particle. Each
solution represented by a particle that works in the search space to find a better position or solution
of the problem. Hence, each particle has a random position and updates its position iteratively in
the hope of finding better solutions. Kach particle holds the essential information about its
movement. The information are related to theith particle of interest, including its position currently
(x), its velocity currently (v), personal best (pBest), local best (IBest,) and the global best (gBest)).

The manipulation of the particles around the search space is restricted by a certain update and
positions rule. It took different forms in the literature. The particles are manipulated according to
the following equations (Yang et al., 2009; Yap ef al., 2011):

Vi () = w V  (t-1)+e, 1,(pBest , (t-1)-X, (t-1)e,r” (IBest,; (t-1)-X ((t-1)) (1
= X (t-1+V, () (D

where, t is iteration number or time, d is the dimension, j the particle index, w is the inertia weight,
r and r’ are two random factors which are two random real numbers between 0 and 1 and ¢, ¢’ are
acceleration coefficients that are adjusting the weight between components. Here, we have
deduced the values for ¢, and ¢, =1.375 and w = 0.3 based on the existing work by Liang et al
(2006) and Windisch et al. (2007). Pursuant to such updated rule, each particle updated its velocity
for better movement around the search space and the new velocity used to find the new position
of the particles depending on a cost factor that controls this movement.

In our PPSTG strategy, we first introduce each particle as a vector. Since each test case has (D)
parameters, as a result, the particle or the vector is (D) dimension also. We can illustrate this vector
by the notation: X; = [X, |, X, X oo, Xip]

In fact, the strategy is a combination of two algorithms: pair generation algorithm and test case
generation algorithm. The strategy starts with pair generation algorithm by receiving the
parameter values. It will immediately manipulate all parameter values. Then, the algorithm
generate a list named Ps that contains all pair interactions of parameter values that are not been
covered yet. The illustration example in Figure 4 shows the pair generation algorithm,.

The algorithm iterates until Ps get empty. When a test case is found for the test suite (named
Ts) that can cover more pair interaction, the test generation algorithm remove the pair interactions
which are covered by this test case, from Ps list. The strategy randomly imitializes each particle with
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Fig. 4: An illustrative example for pair generation algorithm

Input: A test set;
Output: A test case;
Let Ps be a set of all pair interactions of parameter values that are not been covered yet;
Let Ts be a set of candidate tests;
Randomly initialize particles Xi (t) and velocities Vi (t);
While Ps is not empty do {
Evaluate Xi (t) for its pair interaction coverage with Ps;
Choose maximum coverage particle to be 1Pest;
For a specific number of iterations do {
Calculate Vi (t+1);
Moave Xi (t) to Xi (t+1) according to Vi (t+1);
Evaluate Xi (t+1);
If IBest (t+1) cover bigger pair interactions {
1Pest = 1Best (t+1);
1
i

Let gBest be the best test case found;

gBest = 1Best;

Add gBest to the test set Ts;

Remove those pair interactions in Ps that covered by Bt;

1

Fig. 5: PPSTG test suite generator algorithm

its associated parameter values. It will compare each particle which represents a test case, with the
list of pair interactions element Ps. For each particle, there will be a factor named weight that
represents an integer number of covered pair interactions. This weight factor for each particle
stored in a vector named cost vector. When the evaluation of all particles finished, the biggest
weight and its representative particle will be chosen to be the 1Best test case. For the next iteration,
the algorithm will update the particles’ position according to the update rule. Figure 5 shows the
detail steps of the algorithm.

EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of our strategy in term of test size against other strategies, we
made three stage comparisons with some existing strategies and tools. In the first stage, we
compared our strategy with published results from the literature (Cohen et al., 2007; Shiba et al.,
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2004) for GA, ACA, AETG, mAETG and TPO. In addition, we made comparisons with some existing
strategies and tools that were available for implementation. These strategies are IPOG with its tool
ACTS (Forbes et al., 2008), Jenny (Grindal ef al., 2005), GE8Way (Klaib ef al., 2008), TConfig
(Williams, 2000y and TVG (Nie and Leung, 2011). To ensure fairness, we have downloaded and
employed all strategies within our environment which consists of a desktop PC with Windows 7,
2.8 GHz Core 2 Duo CPU, 2 GB of RAM and JSharp installed. In the second stage, we take a
uniform binary parameters configuration and vary the parameters from 3 to 15. Finally, in the
third stage, we take a uniform of ten parameters configuration and we vary the values from 3 to
10. Here, the rationale for selecting such configurations 1s to investigate how PPST s test size
grew with the configurations.

Table 1-3 showed the results obtained for the above-mentioned experiments. As PPSTG
generates non-deterministic results, we perform 20 independent runs in order to ensure high
statistical confidence. Here, we report the best results of these independent run. Cells marked NA
{not available) indicate that the results are unavailable from the literature.

Tahble 1: Comparison of PPSTG with some existing published results

Configurations TVG PICT AETG mAETG GA ACA CTE-XL TConfig [P0 IPOG Jemny G2Way PPSTG
CA (N;2, 3% 11 10 NA NA NA NA 10 10 NA 11 9 10 9
CA (N;2, 39 12 13 9 9 9 9 10 10 9 12 13 10 9
CA (N;2, 39) 20 20 15 17 17 17 a1 20 17 12 20 19 17
CA(N;2, 519 50 47 NA NA NA NA 50 48 47 50 45 46 45
CA (N;2, 1019 180 170 NA NA 157 159 192 170 169 176 157 160 170
MCA (N;2, 5 3° 28) 23 21 19 20 15 16 a1 22 NA 19 41 23 a1
MCA (N;2, 6 5 4° 3¢ 27 41 38 34 35 33 32 39 33 NA 36 31 NA 39
MCA (N;2, T 6 5! 48 3¢ 29) 52 46 45 44 42 42 53 40 NA 44 51  NA 49
MCAN;2, 10'0'8' 716151413121 100 101 NA NA NA NA 102 92  NA 91 98  NA 97

YTV Test vector generator, available at: http://sourceforge.net/projectsitvg, PICT: Private independent combinatorial testing, available
at:http://msdn.microsoft.com/cn-us/testingg/bb980925.aspx, *AETG: Automatic efficient test generator, ‘mAETG: modified Attomatic
efficient test generator, GA: Genetic algorithm, *ACA: Ant colony algorithm, "CET-XL: Classification-Tree editor extended logis, available
http:/fwww berner-mattner.com/en/berner-mattner-home/products/cte-xl *T'Config: Test configuration, "IPQ: In-parameter-order, *'TPOG:
In-parameter-order-generator, available at: http:/esre.nist.gov/acts, *Jenny, available at: http:/burtleburtle.net/bob/math/enny. html,
1232Way: Test generator for pairwise. "PPST(G: Pairwise particle swarm-based test generator, *NA: Not available, *P: System

parameters

Table 2: Binary parameters growing comparison of PPSTG with existing tools

P VG PICT CTE-XL TConfig IPOG Jenmy PPSTG
3 4 4 6 4 4 5 4
4 6 5 6 6 6 6 6
5 &) 7 &) &) &) 7 6
6 &) &) 8 7 8 8 7
7 8 7 8 9 8 8 7
8 8 7 8 9 8 8 8
9 8 9 9 9 8 8 8
10 9 9 9 9 10 10 8
11 9 9 10 9 10 9 9
12 10 9 10 9 10 10 9
13 10 9 10 9 10 10 9
14 10 10 10 9 10 10 9
15 10 10 10 9 10 10 10
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Tahble 3: 10 Parameters variable values comparison of PPSTG with existing tools

) VG PICT CTE-XL TConfig TPOG Jenny PPSTG
3 18 18 18 17 20 19 17
4 33 31 33 31 31 30 29
5 50 47 50 48 50 45 45
6 72 66 71 64 G8 G2 G2
7 98 83 97 85 90 33 81
8 124 112 125 114 117 104 109
9 152 139 161 139 142 129 139
10 189 170 192 170 176 157 170

From Table 1, our PPSTG strategy generates test suites with satisfactory results in most part
of the experiments. The strategy scales well against other strategies. However, when we take SA,
GA, ACA, mAETG and AETG into account, clearly GA and ACA generate slightly better size than
AETG and mAETG while SA generates the optimum results in most of the cases due to its large
random search space. In case of GA and ACA, the design and implementation of both algorithms
{(GA and ACA) are mainly depending on AKETG algorithm. Here, the final test suite is further
optimized by an compaction algorithm that merges the test cases whenever possible for optimality
(Shiba et al., 2004). As a result, it is not clear whether the implemented algorithms performed
better than AKTG and mAETG as the GA and ACA algorithms are directly implemented in the
AETG framework. Taking our PPSTG strategy into consideration, test size is near that of GA and
ACA 1n most cases and performs better than AETG and mAETG in these specific configurations.

Concerning the size of the generated test suite in Table 2 and 3, our PPSTG strategy
outperforms other strategies and seems to give an optimal size in most part of the configurations.
The closest competitors to our strategy are Jenny and TVG.

CONCLUSION

This study discusses the development of pairwise test case generation, called PFSTG, by
adopting Particle Swarm Optimization approach. Experimental results demonstrate the
effectiveness of PPSTG against other existing strategies. We are currently adding general
interaction testing support as well as the support for constraints, seeding, variable strength
features. Furthermore, we plan to fine-tune the initial variable setting values {i.e., inertial weight
and acceleration coefficient) in order to ensure that PPST G always generate near optimal results

in every case.
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